PROBLEMS SPECTRAL TRIPLES AND HEAT KERNEL EXPANSION

- 1. The Borsuk-Ulam Theorem reads as follows. For any $n \in \mathbb{N}$ let σ : $x \to -x$ be the antipodal involution of S^n . Then if $F: S^n \to \mathbb{R}^n$ is continuous, there exists $x \in S^n$ such that $F(x) = F(\sigma(x))$. Try to reformulate this Theorem in the NC geometry language (L. Dabrowski 1504.03588).
- 2. Prove that the set of states is convex. Start with C(M).
- 3. Let M = {0,1} be a space consisting of two points. Then C(M) = C².
 (a) What is (the minimal choice for) H? What is π(a)?
 - (b) What are the states?
 - (c) What are pure states?
 - (d) Take

$$D = \left(\begin{array}{cc} 0 & f \\ f & 0 \end{array}\right)$$

with $f \in \mathbb{R}$. Compute the distance function.

- 4. If $\Gamma(s)\zeta(s,L)$ has a double pole, what can you say about the $t \to 0$ asymptotic expansion of K(t,L)?
- 5. Prove that the heat kernel of $L = -\partial_{\mu}^2$ on \mathbb{R}^d has the form

$$K(x, y|t) = (4\pi t)^{-d/2} \exp\left(-\frac{(x-y)^2}{4t}\right)$$

- 6. Compute the numerical coefficients in front of ER^2 and $E\nabla^2 E$ in $a_6(L, 1)$.
- 7. Consider a conformal transformation $L \to L_{\epsilon} = e^{-2\epsilon f}L$. Prove, that

$$\frac{d}{d\epsilon}|_{\epsilon=0}a_{d-2}(e^{-2\epsilon f}F, L_{\epsilon}) = 0$$

where F and f are smooth functions on M, dim M = d.

- 8. (Index Theorem) Suppose that the Laplace type operators L_1 and L_2 can be factorized as products of first-order operators, $L_1 = D_1D_2$ and $L_2 = D_2D_1$.
 - (a) Prove that $a_k(L_1) = a_k(L_2)$ for $k \neq d$.
 - (b) What can you say about $a_d(L_1) a_d(L_2)$?
- 9. Let D be the usual Dirac operator on a flat Euclidean space in an external electromagnetic field. Let $L = D^2$.
 - (a) Compute E, ω_{μ} and $\Omega_{\mu\nu}$.
 - (b) Compute the local chiral anomaly

$$\lim_{\Lambda \to \infty} \operatorname{Tr} \left(\sigma(x) \gamma_5 \, e^{-D^2/\Lambda^2} \right),\,$$

where $\sigma(x)$ is a smooth function of rapid decay.

- 10. Prove that the algebra of functions on noncommutative torus is associative.
- 11. Let $L = -(\partial_{\mu}^{2} + L(\varphi \star \varphi) + R(\varphi \star \varphi) + L(\varphi)R(\varphi))$ act on scalar functions on the noncommutative torus \mathbb{T}_{θ}^{2} with a rational noncommutativity parameter. Compute $a_{0}(L)$, $a_{2}(L)$ and $a_{4}(L)$.