< ∃ →

3

Quantum entanglement of Pais-Uhlenbeck oscillators

Stefan Mladenov

Sofia University

Quantum Structure of Spacetime and Gravity @ Belgrade August 26, 2016

Based on arXiv:1607.07807 [hep-th].

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
Outline			

Pais-Uhlenbeck oscillators

Quantum entanglement

프 () () () (

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
•	0000	000	
Motivation			

• Higher-derivative theories possess nice renormalisation properties.

- ∢ ≣ ▶

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
•	0000	000	
Motivation			

- Higher-derivative theories possess nice renormalisation properties.
- The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
•	0000	000	
Motivation			

- Higher-derivative theories possess nice renormalisation properties.
- The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.
- Ostrogradsky's Hamiltonian is unbounded from below, hence ghost problem in quantum theory.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
•	0000	000	
Motivation			

- Higher-derivative theories possess nice renormalisation properties.
- The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.
- Ostrogradsky's Hamiltonian is unbounded from below, hence ghost problem in quantum theory.
- Nevertheless, several alternative Hamiltonian formulations exist!

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
•	0000	000	
Motivation			

- Higher-derivative theories possess nice renormalisation properties.
- The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.
- Ostrogradsky's Hamiltonian is unbounded from below, hence ghost problem in quantum theory.
- Nevertheless, several alternative Hamiltonian formulations exist!
- The PU oscillator is conformally invariant for frequencies $\omega_k = (2k+1)\omega_0$.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
•	0000	000	
Motivation			

- Higher-derivative theories possess nice renormalisation properties.
- The Pais-Uhlenbeck oscillator is a toy model for higher-derivative theories.
- Ostrogradsky's Hamiltonian is unbounded from below, hence ghost problem in quantum theory.
- Nevertheless, several alternative Hamiltonian formulations exist!
- The PU oscillator is conformally invariant for frequencies $\omega_k = (2k+1)\omega_0$.
- Stable coherent states, which have constant dispersions and a modified Heisenberg uncertainty relation.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
An alternati	vo Hamiltonian		

The EoM of the PU oscillator of order 2n can be obtained by varying the action

$$S = \frac{1}{2} \int dt \, x_i \prod_{k=0}^{n-1} \left(\frac{d^2}{dt^2} + \omega_k^2 \right) x_i.$$

Ξ.

< ∃ →

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
An alternat	ive Hamiltonian		

The EoM of the PU oscillator of order 2n can be obtained by varying the action

$$S = \frac{1}{2} \int dt \, x_i \prod_{k=0}^{n-1} \left(\frac{d^2}{dt^2} + \omega_k^2 \right) x_i.$$

Ansatz for an alternative Hamiltonian as a linear combination of integrals of motion according to Noether's theorem ($\alpha_k \neq 0$):

$$H_n = \sum_{k=0}^{n-1} \alpha_k J_k.$$

Ξ.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
0	0000	000	0
An alternati	ve Hamiltonian		

The EoM of the PU oscillator of order 2n can be obtained by varying the action

$$S = \frac{1}{2} \int dt \, x_i \prod_{k=0}^{n-1} \left(\frac{d^2}{dt^2} + \omega_k^2 \right) x_i.$$

Ansatz for an alternative Hamiltonian as a linear combination of integrals of motion according to Noether's theorem ($\alpha_k \neq 0$):

$$H_n = \sum_{k=0}^{n-1} \alpha_k J_k.$$

 H_n can play the role of Hamiltonian for the compatible Poisson structure

$$\{A,B\} = \sum_{s,m=0}^{2n-1} w_{sm} \frac{\partial A}{\partial x_i^{(s)}} \frac{\partial B}{\partial x_i^{(m)}}.$$

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
An alternative	Hamiltonian		

An alternative Hamiltonian

The EoM of the PU oscillator of order 2n can be obtained by varying the action

$$S = \frac{1}{2} \int dt \, x_i \prod_{k=0}^{n-1} \left(\frac{d^2}{dt^2} + \omega_k^2 \right) x_i.$$

Ansatz for an alternative Hamiltonian as a linear combination of integrals of motion according to Noether's theorem ($\alpha_k \neq 0$):

$$H_n = \sum_{k=0}^{n-1} \alpha_k J_k.$$

 H_n can play the role of Hamiltonian for the compatible Poisson structure

$$\{A,B\} = \sum_{s,m=0}^{2n-1} w_{sm} \frac{\partial A}{\partial x_i^{(s)}} \frac{\partial B}{\partial x_i^{(m)}}.$$

The variables, which satisfy the structure relations $\{x_i^k, p_j^m\} = \delta_{ij} \delta_{km},$ are

$$x_i^k = \sqrt{|\alpha_k|\rho_k} \prod_{\substack{m=0\\m\neq k}}^{n-1} \left(\frac{d^2}{dt^2} + \omega_m^2\right) x_i, \qquad p_i^k = \operatorname{sgn}(\alpha_k) \frac{dx_i^k}{dt}.$$

Pais-Uhlenbeck oscillators

Quantum entanglement

Perspectives O

Set-up: ring of PU oscillators

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Diagonalisation			

The Hamiltonian can be written in matrix form as

$$H_N = \frac{1}{2} \eta^{\mathrm{T}} \begin{pmatrix} \Omega & 0 \\ 0 & \mathbb{1}_{2N} \end{pmatrix} \eta, \qquad \Omega = \begin{pmatrix} W & C & 0 & \cdots & C \\ C & W & C & \cdots & 0 \\ 0 & C & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & C \\ C & 0 & \cdots & C & W \end{pmatrix}.$$

・ロト ・回ト ・ヨト ・ヨト

= 990

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Diagonalisation			

The Hamiltonian can be written in matrix form as

$$H_N = \frac{1}{2} \eta^{\mathrm{T}} \begin{pmatrix} \Omega & 0 \\ 0 & \mathbb{1}_{2N} \end{pmatrix} \eta, \qquad \Omega = \begin{pmatrix} W & C & 0 & \cdots & C \\ C & W & C & \cdots & 0 \\ 0 & C & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & C \\ C & 0 & \cdots & C & W \end{pmatrix}$$

Symmetric block circulant matrices with symmetric blocks are diagonalised by Discrete Fourier Transform (DFT):

$$\widehat{\Omega} = U^{-1} \Omega U = \operatorname{diag}[D_1, D_2, \dots, D_N],$$
$$U_{kl} = \frac{1}{\sqrt{N}} e^{2\pi i k l/N} \mathbb{1}_2, \quad k, l = 0, 1, \dots, N-1,$$

where the eigenvalues of $\boldsymbol{\Omega}$ are given by

$$D_{k+1} = W + 2\cos(2\pi k/N)C.$$

< ∃ →

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Building the	e Fock space		

The creation and annihilation operators are defined by

$$\mathfrak{a}_j = rac{1}{\sqrt{2\hbar}} \left(\sqrt{\lambda_j} \widehat{x}_j + rac{i}{\sqrt{\lambda_j}} \widehat{p}_j
ight), \qquad \mathfrak{a}_j^\dagger = rac{1}{\sqrt{2\hbar}} \left(\sqrt{\lambda_j} \widehat{x}_j - rac{i}{\sqrt{\lambda_j}} \widehat{p}_j
ight).$$

< 注入 < 注入

< 17 >

= 990

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Building the Fock	space		

The creation and annihilation operators are defined by

$$\mathfrak{a}_j = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{\lambda_j} \widehat{x}_j + \frac{i}{\sqrt{\lambda_j}} \widehat{p}_j \right), \qquad \mathfrak{a}_j^\dagger = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{\lambda_j} \widehat{x}_j - \frac{i}{\sqrt{\lambda_j}} \widehat{p}_j \right).$$

The diagonalised Hamiltonian is equivalent to that of 2N harmonic oscillators

$$H_N = \sum_{j=1}^{2N} \hbar \lambda_j \left(\mathfrak{a}_j^{\dagger} \mathfrak{a}_j + \frac{1}{2} \right).$$

= 990

- ∢ ≣ ▶

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Building the Fock	space		

The creation and annihilation operators are defined by

$$\mathfrak{a}_j = rac{1}{\sqrt{2\hbar}} \left(\sqrt{\lambda_j} \widehat{x}_j + rac{i}{\sqrt{\lambda_j}} \widehat{p}_j
ight), \qquad \mathfrak{a}_j^\dagger = rac{1}{\sqrt{2\hbar}} \left(\sqrt{\lambda_j} \widehat{x}_j - rac{i}{\sqrt{\lambda_j}} \widehat{p}_j
ight).$$

The diagonalised Hamiltonian is equivalent to that of 2N harmonic oscillators

$$H_N = \sum_{j=1}^{2N} \hbar \lambda_j \left(\mathfrak{a}_j^{\dagger} \mathfrak{a}_j + \frac{1}{2} \right).$$

The Fock space is built up from the vacuum

$$|\{n_j\}\rangle = \prod_{j=1}^{2N} \frac{(a_j^{\dagger})^{n_j}}{\sqrt{n_j!}} |\{0\}\rangle, \qquad |\{n_j\}\rangle = |n_1\rangle \otimes \cdots \otimes |n_{2N}\rangle.$$

The excited states are orthonormal, $\langle \{m_j\} | \{n_j\} \rangle = \delta_{\{m_j\}, \{n_j\}}$.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
T I			

Having the Hamiltonian diagonalised, the standard density matrix is:

$$\rho_{\rm eq}(K_j) = \frac{1}{Z(K_j)} e^{-\beta H_N}, \qquad Z(K_j) := {\rm Tr}_{\{j\}} e^{-\beta H_N}.$$

< 注入 < 注入 …

= 990

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
T I (*			

Having the Hamiltonian diagonalised, the standard density matrix is:

$$\rho_{\rm eq}(K_j) = \frac{1}{Z(K_j)} e^{-\beta H_N}, \qquad Z(K_j) := {\rm Tr}_{\{j\}} e^{-\beta H_N}.$$

TFD explores double Hilbert space with basis $\{|n\rangle \otimes |\tilde{n}\rangle\} \equiv \{|n, \tilde{n}\rangle\}.$

• Statistical state:

$$|\Psi\rangle = \sum_n \sqrt{\rho_{\rm eq}} |n\rangle |\tilde{n}\rangle. \label{eq:phi}$$

ъ.

Motivation Pais-Uhlenbeck oscillators		Quantum entanglement	Perspectives	
	0000	000		

Having the Hamiltonian diagonalised, the standard density matrix is:

$$\rho_{\rm eq}(K_j) = \frac{1}{Z(K_j)} e^{-\beta H_N}, \qquad Z(K_j) := {\rm Tr}_{\{j\}} e^{-\beta H_N}$$

TFD explores double Hilbert space with basis $\{|n\rangle \otimes |\tilde{n}\rangle\} \equiv \{|n, \tilde{n}\rangle\}.$

• Statistical state:

$$|\Psi
angle = \sum_{n} \sqrt{
ho_{
m eq}} |n
angle | ilde{n}
angle.$$

• Extended density matrix:

$$\widehat{\rho}(K_j) = |\Psi(K_j)\rangle \langle \Psi(K_j)|.$$

< ∃ >

-	••••	Ŭ,

Having the Hamiltonian diagonalised, the standard density matrix is:

$$\rho_{\rm eq}(K_j) = \frac{1}{Z(K_j)} e^{-\beta H_N}, \qquad Z(K_j) := {\rm Tr}_{\{j\}} e^{-\beta H_N}$$

TFD explores double Hilbert space with basis $\{|n\rangle \otimes |\tilde{n}\rangle\} \equiv \{|n, \tilde{n}\rangle\}.$

• Statistical state:

$$|\Psi
angle = \sum_{n} \sqrt{
ho_{
m eq}} |n
angle | ilde{n}
angle.$$

• Extended density matrix:

$$\widehat{\rho}(K_j) = |\Psi(K_j)\rangle \langle \Psi(K_j)|.$$

Renormalised extended density matrix:

$$\widehat{\rho}_{1,2}(K_j) = \operatorname{Tr}_{3,\dots,2N} \widehat{\rho}(K_j).$$

Motivation	Pais-Uhlen	beck oscillators	Quantum entanglement	Perspectives
	0000		•00	

Having the Hamiltonian diagonalised, the standard density matrix is:

$$\rho_{\rm eq}(K_j) = \frac{1}{Z(K_j)} e^{-\beta H_N}, \qquad Z(K_j) := {\rm Tr}_{\{j\}} e^{-\beta H_N}$$

TFD explores double Hilbert space with basis $\{|n\rangle \otimes |\tilde{n}\rangle\} \equiv \{|n, \tilde{n}\rangle\}.$

• Statistical state:

$$|\Psi
angle = \sum_{n} \sqrt{
ho_{
m eq}} |n
angle | ilde{n}
angle.$$

• Extended density matrix:

$$\widehat{\rho}(K_j) = |\Psi(K_j)\rangle \langle \Psi(K_j)|.$$

Renormalised extended density matrix:

$$\widehat{\rho}_{1,2}(K_j) = \operatorname{Tr}_{3,\dots,2N} \widehat{\rho}(K_j).$$

• Extended entanglement entropy:

$$\widehat{S}_{1,2} = -k_{\mathsf{B}} \operatorname{Tr}_{1,2}\left[\widehat{\rho}_{1,2}\log\widehat{\rho}_{1,2}\right].$$

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Entanglement ent	ropy		

$$\widehat{S}_{1,2}(K_1, K_2) = k_{\mathsf{B}} \left[\frac{K_1}{e^{K_1} - 1} + \frac{K_2}{e^{K_2} - 1} - \log\left[\left(e^{-K_1} - 1 \right) \left(e^{-K_2} - 1 \right) \right] \right]$$

Figure: The entanglement entropy as function of K_1 and K_2 in units $k_{\rm B} = 1$. Evidently, the Nernst heat theorem is satisfied.

문어 문

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Information space	metric		

• Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler divergence).

≡ nar

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Information space	metric		

- Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler divergence).
- Induced by flat space Euclidean metric after appropriate change of variables.

4 3 b

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Information space	metric		

- Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler divergence).
- Induced by flat space Euclidean metric after appropriate change of variables.
- Fubini-Study metric on complex projective Hilbert space.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Information space	metric		

- Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler divergence).
- Induced by flat space Euclidean metric after appropriate change of variables.
- Fubini-Study metric on complex projective Hilbert space.
- Written in mixed states it becomes the quantum Bures metric.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000	000	
Information space	metric		

- Infinitesimal form of the relative entropy (Hessian of the Kullback-Leibler divergence).
- Induced by flat space Euclidean metric after appropriate change of variables.
- Fubini-Study metric on complex projective Hilbert space.
- Written in mixed states it becomes the quantum Bures metric.

□ > < E > < E > E - のへで

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
			•

• Generalisations to odd/higher-order PUOs and more complex interactions.

ъ.

< ∃ →

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
0	0000	000	•

- Generalisations to odd/higher-order PUOs and more complex interactions.
- Entanglement entropy of $\mathcal{N}=2$ supersymmetric PU oscillator.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000		•

- Generalisations to odd/higher-order PUOs and more complex interactions.
- Entanglement entropy of $\mathcal{N} = 2$ supersymmetric PU oscillator.
- Holographic entanglement entropy: Ryu-Takayanagi proposal.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000		•

- Generalisations to odd/higher-order PUOs and more complex interactions.
- Entanglement entropy of $\mathcal{N} = 2$ supersymmetric PU oscillator.
- Holographic entanglement entropy: Ryu-Takayanagi proposal.
- Non-equilibrium (time-dependent) systems of PU oscillators.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000		•

- Generalisations to odd/higher-order PUOs and more complex interactions.
- Entanglement entropy of $\mathcal{N} = 2$ supersymmetric PU oscillator.
- Holographic entanglement entropy: Ryu-Takayanagi proposal.
- Non-equilibrium (time-dependent) systems of PU oscillators.
- Studying information-geometric characteristics of systems of PUOs, i.e. Fisher information metric, Kullback-Leibler divergence etc.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000		•

- Generalisations to odd/higher-order PUOs and more complex interactions.
- Entanglement entropy of $\mathcal{N} = 2$ supersymmetric PU oscillator.
- Holographic entanglement entropy: Ryu-Takayanagi proposal.
- Non-equilibrium (time-dependent) systems of PU oscillators.
- Studying information-geometric characteristics of systems of PUOs, i.e. Fisher information metric, Kullback-Leibler divergence etc.
- Phase transitions.

Motivation	Pais-Uhlenbeck oscillators	Quantum entanglement	Perspectives
	0000		•

- Generalisations to odd/higher-order PUOs and more complex interactions.
- Entanglement entropy of $\mathcal{N} = 2$ supersymmetric PU oscillator.
- Holographic entanglement entropy: Ryu-Takayanagi proposal.
- Non-equilibrium (time-dependent) systems of PU oscillators.
- Studying information-geometric characteristics of systems of PUOs, i.e. Fisher information metric, Kullback-Leibler divergence etc.
- Phase transitions.

Thank you for your attention!