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Theoretical Physics Division

Group for Theoretical and Mathematical physics

August 26, 2016
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Physical motivation for NCG

I DFR,Commun. Math. Phys. 172: 187-220 (1995)

”
...A sufficient condition for preventing gravitational collapse can be expressed as an uncertainty

relation for the coordinates. This relation can in turn be derived from a commutation relation for the

coordinates.”

∆xµ∆xν > l2
Planck

xµ → x̂µ ⇒ [x̂µ, x̂ν ] 6= 0

I Certain low energy limits of string theory (Moyal space) and
Loop quantum gravity (κ-Minkowski) lead to NCFT

I Not only for Planck scale physics −→ Almost-commutative
manifolds: reformulation of gauge theories and the
“mathematical” origin of Higgs mechanism and Standard
model (Dubois-Violette, Kerner, Madore, Connes,...)
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NCFT - modern history

I 1986- Witten: string field theory

I 1990- fuzzy sphere, κ-Minkowski

I 1992- Yang-Mills-Higgs model from matrix geometry

I 1998- NCFT on R4
θ as some low energy limit of string

I >1998 more interests: renormalizability, matrix model formulation,
NC gauge theories...

I 2004- exactly solvable and to all order renormalizable model on R4
θ

I >2004 ↑↑ literature on NCFT on R4
θ, κ-Minkowski, R3

λ, NC Tori,
etc.
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NCFT - properties

I nonlocal theories with complicated kinetic operator

I some could be represented as matrix models

I UV/IR mixing

I vacuum instabilities
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Scalar field theory on deformed R3
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Scalar field theory on deformed R3

T.J., T. Poulain and J.C. Wallet, “Closed star product on
noncommutative R3 and scalar field dynamics,” arXiv:1603.09122
[hep-th].

Properties:

I UV/IR freedom

I one-loop finite 2-point function −→ finite n-point functions

I fulfilling the long forgotten dream of noncommutativity
serving as a natural UV cut-off
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Deformation of R3 space −→ R3
θ generated by x̂i satisfying

[x̂i , x̂i ] = iθεijk x̂k

It will be convenient to view the algebra R3
θ as

R3
θ := (M(R3), ?D),

where M(R3) is the multiplier algebra of S(R3) (the set of
Schwartz functions on R3) for the star-product ?D defined by

f ?Dg =

∫
d3k1

(2π)3

d3k2

(2π)3
f̃ (k1)g̃(k2)

2|B(k1, k2)| sin( θ2 |k1|) sin( θ2 |k2|)
θ|k1||k2| sin

(
θ
2 |B(k1, k2)|

) e iBµ(k1,k2)xµ

for any f , g ∈ S(R3) in which the symbol f̃ denotes generically the
Fourier transform of f .
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?D is closed under the trace functional∫
f ?D g =

∫
f g

which will enable us to have a free field theory with a commutative
Laplacian

S =

∫
d3x

[1

2
∂µφ?D∂µφ+

1

2
m2φ?Dφ

]
=

∫
d3x

[1

2
∂µφ∂µφ+

1

2
m2φφ

]
as shown in V.G. Kupriyanov and P. Vitale, “Noncommutative Rd

via closed star product”, JHEP 08 (2015) 024, [arXiv:1502.06544]
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Interaction

The model is defined with the following interaction

Sint = λ

∫
d3xφ ?D φ ?D φ ?D φ

= λ

∫
d3x

∫ [
4∏

i=1

d3ki
(2π)3

φ̃(ki )

]
(e ik1x ?D e ik2x ?D e ik3x ?D e ik4x)(x)

= λ

∫ [
4∏

i=1

d3ki
(2π)3

φ̃(ki )

]
W(k1, k2)W(k3, k4)δ(B(k1, k2) + B(k3, k4))
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Two-point functions

For n ≥ 4, n-point functions are already finite in the commutative
case for R3.
We are interested in the 2-point function −→ two type of
contributions (two contractions).

Γ
(I )
2 =

∫
d3x

[
4∏

i=1

d3ki
(2π)3

]
φ̃(k3)φ̃(k4)

δ(k1 + k2)

k2
1 + m2

(e ik1x?De ik2x?De ik3x?De ik4x)(x)

Γ
(II )
2 =

∫
d3x

[
4∏

i=1

d3ki
(2π)3

]
φ̃(k2)φ̃(k4)

δ(k1 + k3)

k2
1 + m2

(e ik1x?De ik2x?De ik3x?De ik4x)(x)
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Type-I contributions

Since

(e ikx ?D e−ikx)(x) =
4

θ2

sin2( θ2 |k |)
|k |2

we obtain

Γ
(I )
2 =

∫
d3x

d3k3

(2π)3

d3k4

(2π)3
φ̃(k3)φ̃(k4)(e ik3x ?D e ik4x)(x)ω(I )

=

∫
d3x(φ ?D φ)(x)ω(I ) =

∫
d3x φ(x)φ(x)ω(I )

with

ω(I ) =
4

θ2

∫
d3k

(2π)3

sin2( θ2 |k |)
k2(k2 + m2)

=
1

π2θ2

∫ ∞
0

dr
1− cos(θr)

r 2 + m2
=

1− e−θm

2mπθ2
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Type-I contributions

I Type-I contributions are UV finite and do not exhibit IR
singularity.

I Whenever θ 6= 0, type-I contributions cannot generate IR/UV
mixing.

The θ expansion of ω(I ) gives

ω
(I )
θ→0 = Λ + ...,

where the ellipsis denote finite (O(1)) contributions and Λ = 1
2πθ . Thus,

we recover as leading divergent term the expected linear divergence
(showing up when Λ→∞) which occurs in the 2-point function for the
commutative theory with Λ = 1

2πθ as the UV cutoff.
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Type-II contributions

Γ
(II )
2 = Γ

(I )
2 +

∫
d3k2

(2π)3

d3k4

(2π)3
φ̃(k2)φ̃(k4)I (k2, k4)

I (k2, k4) ∼ C (α2, β2)

θ
|k2|unδ

′

n(k4) +O(θ0),

with C (α2, β2) is finite. Hence, as for the type-I contributions, the θ
expansion of I (k2, k4) is

I ∼ Λ + ... (1)

where the ellipsis still denote finite O(1) contributions and Λ = 1
2πθ .

Thus, we recover one more time the expected linear divergence when
Λ→∞ (θ → 0) occurring in the 2-point function for the commutative
theory. Again, the present su(2) noncommutativity generates a natural
UV cutoff for the scalar field theory.

Tajron Jurić Closed star product on noncommutative R3 and scalar field dynamics



Thank you for your attention!
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