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1. Lecture I: basics

• outline, motivation

• Poisson structures, symplectic structures and quantization

• basic examples of fuzzy spaces
(S2

N , T
2
N , R4

θ etc.)

• quantized coadjoint orbits (CP n
N )

• generic fuzzy spaces; fuzzy S4
N , squashed CP 2 etc.

• counterexample: Connes torus

2. Lecture II: developments

• coherent states on fuzzy spaces (Perelomov)

• symbols and operators, semi-class limit, visualization

• uncertainty, UV/IR regimes on S2
N etc.

3. Lecture III: applications

• NCFT on fuzzy spaces: scalar fields & loops

• NC gauge theory from matrix models

• IKKT model
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• emergent gravity on S4
N

literature:
These lectures will loosely follow the following:

• introductory review:

H.S., “Noncommutative geometry and matrix models”. arXiv:1109.5521

• H. C. Steinacker, “String states, loops and effective actions in noncommu-
tative field theory and matrix models,” [arXiv:1606.00646 [hep-th]].

• L. Schneiderbauer and H. C. Steinacker, “Measuring finite Quantum Ge-
ometries via Quasi-Coherent States,” [arXiv:1601.08007 [hep-th]].

Further related useful literature is e.g.

• J. Madore, “The Fuzzy sphere,” Class. Quant. Grav. 9, 69 (1992).

• Richard J. Szabo, “Quantum Field Theory on Noncommutative Spaces”

arXiv:hep-th/0109162v4

• M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” [hep-
th/0106048].

• H. Steinacker, “Emergent Geometry and Gravity from Matrix Models: an
Introduction,” [arXiv:1003.4134 [hep-th]].

• N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, “A large-N reduced
model as superstring,” [arXiv:hep-th/9612115].
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1 Lecture I: basics
Motivation, scope
gravity↔ quantum mechanics
general relativity (1915) established at low energies, long distances

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν

space-time: pseudo-Riemannian manifold (M, g), dynamical metric gµν describes
gravity through the Einstein equations.
is incomplete (singularities)
no natural quantization (non-renormalizable)

Q.M. & G.R. ⇒ break-down of classical space-time below LPl =
√

~G/c3 =
10−33cm

classical concept of space-time as manifold physically not meaningful at scales
(∆x)2 ≤ L2

Pl

→ expect quantum structure of space-time at Planck scale

standard argument: Consider an object of size ∆x.
Heisenbergs uncertainty relation⇒momentum is uncertain by ∆x ·∆p ≥ ~

2
,

i.e. momentum takes values up to at least ∆p = ~
2∆x

.
⇒ it has an energy or mass mc2 = E ≥ ∆pc = ~c

2∆x

G.R. ⇒ ∆x ≥ RSchwarzschild ∼ 2GE
c4
≥ ~G

c3∆x

⇒ (∆x)2 ≥ ~G/c3 = L2
Pl

more precise version:
(Doplicher Fredenhagen Roberts 1995 hep-th/0303037)

1.1 NC geometry
replace commutative algebra of functions → NC algebra of “functions”

(cf. Gelfand-Naimark theorem)

inspired by quantum mechanics: quantized phase space

[Xµ, Pν ] = i~δµν
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→ area quantization ∆Xµ∆Pµ = ~
2

(Bohr-Sommerfeld quantization!)

NCG: not just NC algebra, but extra structure which defines the geometry

many posssibilities

• Connes: (math) spectral triples

• here: alternative approach, motivated by physics, string theory, matrix mod-
els

1.2 Fuzzy spaces

Definition 1.1. Fuzzy space = noncommutative spaceMN ↪→ RD

with intrinsic UV cutoff, finitely many d.o.f. per unit volume

similar mathematics & concepts as in Q.M., but applied to configuration space
(space-time) instead of phase space

[Xµ, Xν ] = i|θµν |

→ typically quantized symplectic space
→ area quantization ∆Xµ∆Xν ≥ θµν

2
, finitely many d.o.f per unit volume

note:

• geometry from embedding in target space Rn

distinct from spectral triple approach (Connes)

• arises in string theory from D0 branes in background flux (“dielectric branes”)

• arises as nontrivial vacuum solutions in Yang-Mills gauge theory with large
rank (“fuzzy extra dimensions”)

• condensed matter physics in strong magnetic fields (quantum Hall effect,
monopoles (?) ...)

goal:

• formulate physical models (QFT) on fuzzy spaces

study UV divergences in QFT (UV/IR mixing)

• find dynamical quantum theory of fuzzy spaces (→ quantum gravity ?!)

4



1.3 Poisson / symplectic spaces & quantization
{., .} : C∞(M)× C∞(M)→ C∞(M) ... Poisson structure if

{f, g}+ {g, f} = 0, anti-symmetric
{f · g, h} = f · {g, h}+ {f, h} · g Leibnitz rule / derivation,

{f, {g, h}} + cyclic = 0 Jacobi identity

↔ tensor field θµν(x)∂µ ∧ ∂ν with

θµν = −θνµ, θµµ
′
∂µ′θ

νρ + cyclic = 0

assume θµν non-degenerate
Then exercise 1 :

ω := 1
2
θ−1
µν dx

µ ∧ dxν ∈ Ω2M closed,
dω = 0

... symplectic form (=a closed non-degenerate 2-form)

examples:

• cotanget bundle: letM ... manifold, local coords xi

T ∗M ... bundle of 1-forms pi(x)dxi overM
local coords on T ∗M : xi, pj
at point (xi, pj) ∈ T ∗M, choose the one-form θ = pidx

i. This defines a
canonical (tautological) 1-form θ on T ∗M.

The symplectic form is defined as ω = dθ = dpidx
i

• any orientable 2-dim. manifold

ω ... any 2-form, e.g. volume-form

e.g. 2-sphere S2: let ω = unique SO(3) -invariant 2- form

Darboux theorem:
suppose that ω is a symplectic 2-form on a 2n- dimensional manifold M. for
every p ∈ M there is a local neighborhood with coordinates xµ, yµ, µ = 1, ..., n
such that

ω = dx1 ∧ dy1 + ...+ dxn ∧ dyn = dθ.

so all symplectic manifolds with equal dimension are locally isomorphic
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1.4 Quantized Poisson (symplectic) spaces
(M, θµν(x)) ... 2n-dimensional manifold with Poisson structure

Its quantizationMθ is given by a NC (operator) algebra A and a (linear) quanti-
zation map Q

Q : C(M) → A ⊂ End(H)

f(x) 7→ f̂

such that
(f̂)† = f̂ ∗

f̂ ĝ = f̂ g + o(θ)

[f̂ , ĝ] = i{̂f, g}+ o(θ2)

or equivalently
1

θ

(
[f̂ , ĝ]− i{̂f, g}

)
→ 0 as θ → 0.

hereH ... separable Hilbert space
Q should be an isomorphism of vector spaces (at least at low scales), such that
(“nice“) Φ ∈ End(H) ↔ quantized function onM

cf. correspondence principle

we will assume that the Poisson structure is non-degenerate, corresponding to a
symplectic structure ω.
Then the trace is related to the integral as follows:

(2π)nTrQ(φ) ∼
∫

ωn

n!
φ =

∫
d2nx ρ(x)φ(x)

ρ(x) = Pfaff (θ−1
µν ) =

√
det θ−1

µν ... symplectic volume

(recall that ω
n

n!
is the Liouville volume form. This will be justified below)

Interpretation:
ρ(y) =

√
det θ−1

µν =: Λ2n
NC

where ΛNC can be interpreted as “local” scale of noncommutativity.
in particular: dim(H) ∼ Vol(M), (cf. Bohr-Sommerfeld)

examples & remarks:

• Quantum Mechanics:

phase space R6 = R3 × R3 = T ∗R3, coords (pi, q
i),

Poisson bracket {qi, pj} = δji replaced by canonical commutation relations
[Qi, Pj] = i~δij

6



• reformulate same structure as R2
~ = Moyal-Weyl quantum plane

Xµ =

(
Q
P

)
, Heisenberg C.R.

[Xµ, Xν ] = iθµν 1l, µ, ν = 1, ..., 2, θµν = ~
( 0 1
−1 0

)
A ⊂ End(H) ... functions on R2

~

uncertainty relations ∆Xµ∆Xν ≥ 1
2
|θµν |

Weyl-quantization: Poisson structure {xµ, xν} = θµν

Q : L2(R2) → A ⊂ L(H), (Hilbert-Schmidt operators)

φ(x) =
∫
d2k eikµx

µ
φ̂(k) 7→

∫
d2k eikµX

µ
φ̂(k) =: Φ(X) ∈ A

respects translation group.

interpretation:

Xµ ∈ A ∼= End(H) ... quantiz. coord. function on R2
~

Φ(Xµ) ∈ End(H) ... observables (functions) on R2
~

• Q not unique, not Lie-algebra homomorphism

(Groenewold-van Hove theorem)

• existence, precise def. of quantization non-trivial, ∃ various versions:

– formal (as formal power series in θ):
always possible (Kontsevich 1997) but typically not convergent

– strict (= as C∗ algebra resp. in terms of operators onH),

– etc.

need strict quantization (operators)

∃ existence theorems for Kähler-manifolds ( Schlichenmaier etal),

almost-Kähler manifolds (= very general) (Uribe etal)

• semi-classical limit:

work with commutative functions (de-quantization map),

replace commutators by Poisson brackets

7



i.e. replace

F̂ → f = Q−1(F )

[F̂ , Ĝ] → i{f, g} (+O(θ2), drop)

i.e. keep only leading order in θ

1.5 Embedded non-commutative (fuzzy) spaces

Consider a symplectic manifold embedded in target space,

xa : M ↪→ RD, a = 1, . . . , D

(not necessarily injective)
and some quantization Q as above. Then define

Xa := Q(xa) = Xa† ∈ End(H) .

IfM is compact, these will be finite-dimensional matrices, which describe quan-
tized embedded symplectic space = fuzzy space.

Definition 1.2. A fuzzy space is defined in terms of a set of D hermitian
matricesXa ∈ End(H), a = 1, . . . , D, which admits an approximate ”semi-
classical“ description as quantized embedded symplectic space with Xa ∼
xa : M ↪→ RD.

aim: develop a systematic procedure to extract the effective geometry,
formulate & study physical models on these.

1.6 The fuzzy sphere
1.6.1 classical S2

xa : S2 ↪→ R3

xaxa = 1

algebra A = C∞(S2) ... spanned by spherical harmonics Y l
m = polynomials of

degree l in xa

choose SO(3)-invariant symplectic form ω, normalized as
∫
ω = 2πN
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1.6.2 fuzzy S2
N

(Hoppe 1982, Madore 1992)

S2 compact ⇒ H = CN , AN = End(H) = Mat(N,C)
would like to preserve rotational symmetry SO(3)

su(2) action on AN :

Let Ja ... generators of su(2),

[Ja, J b] = iεabcJ c

Let π(N)(J
a) ... N− dim irrep of su(2) onH = CN (spin j = N−1

2
)

Define
su(2)×AN → AN

(Ja, φ) 7→ [π(N)(J
a), φ]

decompose AN into irreps of SO(3):

AN = Mat(N,C) ∼= (N)⊗ (N̄) = (1) ⊕ (3) ⊕ ...⊕ (2N − 1)

=: {Ŷ 0
0 } ⊕ {Ŷ 1

m} ⊕ ...⊕ {Ŷ N−1
m }.

... fuzzy spherical harmonics; UV cutoff in angular momentum!
Introduce Hilbert space structure on AN = Mat(N,C) by

(F,G) :=
4π

N
Tr(F †G)

corresponds to L2(S2) with (f, g) :=
∫
S2 f

∗g

normalize the Ŷ l
m such that ONB,

(Ŷ l
m, Ŷ

l′

m′) = 4πδll
′
δmm′

quantization map:

Q : C(S2) → AN

Y l
m 7→

{
Ŷ l
m, l < N
0, l ≥ N

satisfies Q(f ∗) = Q(f)†

embedding functions want Xa ∼ xa

note: xi : S2 ↪→ R3 are spin 1 harmonics, Y 1
±1 = x1 ± ix2 and Y 1

0 = x3.
Hence quantization given by Ŷ 1

±1 = X1 ± iX2 and Ŷ 1
0 = X3, i.e.

Xa := Q(xa) = CN π(N)(J
a)
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for some constant CN (unique spin 1 irrep).
It follows

[Xa, Xb] = i CN εabcX
c

fix radius to be 1,

3∑
a=1

(Xa)2 = C2
NJ

aJa = CN
N2 − 1

4
1l,

cf. quadratic Casimir, implies

CN = 2/
√
N2 − 1 ≈ 2

N
.

correspondence principle → Poisson structure

{xa, xb} = CN εabc x
c ≈ 2

N
εabc x

c

which is of order θ ∼ 2/N .
corresponds to SU(2)-invariant symplectic form

ω =
N

4
εabcx

adxbdxc =: Nω1

on S2 with
∫
ω = 2πN .

(unique closed and SO(3) invariant volume form)

Exercise 2 : check this by introducing local coordinates x1, x2 near north pole.
at north pole (NP): {x1, x2} = 2

N

⇒ symplectic structure θ−1
12 = N

2
at NP

therefore:

S2
N is quantization of (S2, Nω1)

integral: (2π)Tr(Q(f)) =
∫
S2 ωf

(only Ŷ 0
0 ∼ 1l contributes).

∃ inductive sequences of fuzzy spheres

AN ↪→ AN+1 ↪→ ... ↪→ A = C∞(S2)
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respecting norm and group structure (not algebra).

Realize Ŷ l
m = P l

m(X) as totally symmetrized polynomials. Clearly the generators
Xa commute up to 1

N
corrections, hence Q(fg) → Q(f)Q(g) for N → ∞, for

fixed quantum numbers. Thus

Q(fg) = Q(f)Q(g) +O( 1
N

),
Q(i{f, g}) = [Q(f),Q(g)] +O( 1

N2 )

for fixed angular momenta� N .
For a fixed S2

N . the relation with the classical case is only justified for low angular
momenta, consistent with a Wilsonian point of view. (One should then only ask
for estimates for the deviation from the classical case.)

example: consider the coordinate ”function“

X3 =
2√

N2 − 1
diag((N − 1)/2, (N − 1)/2− 1, ...,−(N − 1)/2)

normalization such that the spectrum is essentially dense from −1 to 1.

local description: near ”north pole“ X3 ≈ 1, X1 ≈ X1 ≈ 0

X3 =
√

1− (X1)2 − (X2)2

[X1, X2] = i√
CN
X3 =: θ12(X) ≈ 2i

N
cf. Heisenberg algebra!

quantum cell ∆A = ∆X1∆X2 ≥ 1
N

, total area N∆A ∼ 1

S2
N consists of N quantum cells

Exercise 3 : Work out the “Jordan-Schwinger” (“2nd quantized“) realization
for the fuzzy sphere, i.e. define

X i := a+
α (σi)αβa

β, α = 1, 2

for bosonic creation- and anihilation operators [aα, a+
β ] = δαb acting on the bosonic

Fock space F = ⊕NFN , FN = a+...a+︸ ︷︷ ︸
Ntimes

|0〉.

Show that theX i can be restricted to theN -particle sectorFN specified byX iXi ∼
N̂ = a+

αa
α = const, and satisfy on FN the relations of a fuzzy sphere S2

N .
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1.7 Metric structure of the fuzzy sphere
SO(3) symmetry ⇒ expect ”round sphere“

metric encoded in NC Laplace operator

� : A → A, �φ = [Xa, [Xb, φ]]δab

SO(3) invariant: �(g . φ) = g . (�φ) ⇒ �Ŷ l
m = clŶ

l
m

note: � = C2
N J

aJa on A ∼= (N)⊗ (N̄) ∼= (1)⊕ (3)⊕ ...⊕ (2N − 1)

⇒ �Ŷ l
m = C2

N l(l + 1)Ŷ l
m

spectrum identical with classical case ∆gφ = 1√
|g|
∂µ(
√
|g|gµν∂νφ)

up to cutoff

⇒ effective metric of � = round metric on S2

1.8 Fuzzy torus T 2
N

def. U =


0 1 0 ... 0
0 0 1 ... 0

. . .
0 ... 0 1
1 0 ... 0

 , V =


1

e2πi 1
N

e2πi 2
N

. . .
e2πiN−1

N

 satisfy

UV = qV U, UN = V N = 1, q = e2πi 1
N

[U, V ] = (q − 1)V U

generate A = Mat(N,C) ... quantiz. algebra of functions on T 2
N

ZN × ZN action:

ZN ×A → A similar other ZN
(ωk, φ) 7→ UkφU−k

A = ⊕N−1
n,m=0 U

nV m ... harmonics

quantization map:

Q : C(T 2) → A = Mat(N,C)

einϕeimψ 7→
{
qnm/2UnV m, |n|, |m| < N/2

0, otherwise
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satisfies
Q(fg) = Q(f)Q(g) +O( 1

N
),

Q(i{f, g}) = [Q(f),Q(g)] +O( 1
N2 )

Poisson structure {eiϕ, eiψ} = 2π
N
eiϕeiψ on T 2 (⇔ {ϕ, ψ} = −2π

N
)

integral: 2πTr(Q(f)) =
∫
T 2

ωNf, ωN = N
2π
dϕdψ = Nω1

T 2
N ... quantization of (T 2, ωN)

metric on T 2
N ? ... “obvious”, but need extra structure:

embedding T 2 ↪→ R4 via x1 + ix2 = eiϕ, x3 + ix4 = eiψ

quantization of embedding maps xa ∼ Xa : 4 hermitian matrices

X1 + iX2 := U, X3 + iX4 := V

satisfy
[X1, X2] = 0 = [X3, X4]

(X1)2 + (X2)2 = 1 = (X3)2 + (X4)2

[U, V ] = (q − 1)V U

Exercise 4 : derive this, and translate the last relation into commutation rela-
tions for Xa

Laplace operator:

�φ = [Xa, [Xb, φ]]δab

= [U, [U †, φ]] + [V, [V †, φ]] = 2φ− UφU † − U †φU − (%V )

�(UnV m) = c([n]2q + [m]2q)U
nV m ∼ c(n2 +m2)UnV m,

c = −(q1/2 − q−1/2)2 ∼ 1
N2

Exercise 5 : check this!
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where

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
=

sin(nπ/N)

sin(π/N)
∼ n (“q-number”)

spec� ≈ spec∆T 2 below cutoff

therefore:

geometry of (embedded) fuzzy torus T 2
N ↪→ R4 is ≈ that of a classical flat torus

momentum space is compactified! [n]q

compare: noncommutative torus T 2
θ Connes

UV = qV U, q = e2πiθ

U † = U−1, V † = V −1

generate A ... algebra of functions on T 2
θ

note: all UnV m independent, A infinite-dimensional

in general non-integral (spectral) dimension, ...

for θ = p
q
∈ Q: ∞ -dim. center generated by UnqV mq

fuzzy torus T 2
N
∼= T 2

θ /C, θ = 1
N

center C ... infinite additional sector (meaning ??)

NC torus T 2
θ very subtle, “wild”

fuzzy torus T 2
N “stable” under deformations

1.9 (Co)adjoint orbits
Let G ... compact Lie group with Lie algebra g = Lie(G) ∼= RD.
Then G has a natural adjoint action on g given by

g . X = Adg(X) = g ·X · g−1

for g ∈ G and X ∈ g.
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The (co-)adjoint orbit O[X] of G through X ∈ g is then defined as

O[X] := {g ·X · g−1 | g ∈ G} ⊂ g ∼= RD

O[X] is submanifold embedded in “target space” RD, invariant under the adjoint
action.
can assume that X ∈ Cartan subalgebra, i.e. X = H is diagonal.
is homogeneous space:

O(H) ∼= G/KH

where KH = {g ∈ G : Adg(H) = 0} is the stabilizer of H .

choose ONB {λa, a = 1, ..., dim g} of g ∼= RD,
structure constants

[λa, λb] = if cabλc

→ Cartesian coordinate functions xa on RD 3 X = xaλa,
defines function

xa : O[X] ↪→ RD

... characterize embedding of O[X] in RD, induce metric structure on O[X]

1.9.1 Poisson structure on RD and O[X]:

{xa, xb} := fabc x
c (1)

extended to C∞(RD) as derivation.
Jacobi identity is consequence of Jacobi identity for g
adjoint action of g on itself (=RD) is realized through Hamiltonian vector fields

adλa [X] = [λa, X] = −i{xa, X}

Poisson structure is G- invariant
all Casimirs on g are central, notably C2 ∼ xaxb g

ab

⇒ is not symplectic, but induces non-degenerate Poisson structure (symplectic
structure) on O[X]
the O[X] are the symplectic leaves of RD.
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more abstract definition for symplectic structure:
G-invariant symplectic form on coadjoint orbit O∗µ (µ ∈ g ... weight)

ωµ(X̂, Ŷ ) := µ([X, Y ])

where X̂ ... vector field on g∗ given by action of X ∈ g on g∗.
... an antisymmetric, non-degenerate and closed 2-form on O∗µ.
(Kirillov-Kostant-Souriau)

Example: sphere S2
N

G = SU(2), generators λ1, λ2, λ3 = Pauli matrices
coadjoint orbit through

λ3 =
1

2

(
1 0
0 −1

)
∈ su(2)

stabilizer = U(1)
S2 = O[λ3] ∼= SU(2)/U(1)

Poisson bracket on R3 = su(2)

{xa, xb} = εabcxc

respects R2 = xax
a, symplectic leaves = S2.

Example: complex projective space CP 2

G = SU(3), generators λa = Gell-Mann matrices
coadjoint orbit through

λ8 =
1

2
√

3

−1 0 0
0 −1 0
0 0 2

 ∈ su(3)

stabilizer = SU(2)× U(1)

CP 2 = O[λ8] ∼= SU(3)/SU(2)× U(1)

Note:
X := 2

√
3λ8 satisfies (X + 1)(X − 2) = 0

i.e. only two different eigenvalues
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hence X determines a rank 1 projector

P :=
1

3
(X + 1) ∈Mat(3,C)

satisfies
P 2 = P, Tr(P ) = 1

hence P can be written as
P = |zi〉〈zi|

where (zi) = (z1, z2, z3) ∈ C3, normalized as 〈zi|zi〉 = 1.
Such projectors are equivalent to rays in C3

→ conventional description of CP 2 as C3/C∗ ∼= S5/U(1).

Poisson bracket on R8 = su(3)

{xa, xb} = fabcxc

The embedding of C[X] ⊂ R8 ∼= su(3) is described as follows:
characteristic equation X2 −X − 2 = 0 is equivalent to

δabx
axb = 3, dabcxaxb = xc. (2)

where dabc is the totally symmetric invariant tensor of SU(3).

Exercise 6 : derive the relations (2) using λaλb = 2
3
δab + 1

2
(ifabc + dabc)λc

analogous construction for CP n:

CP n ∼= O(λ) ∼= SU(n+ 1)/(SU(n)× U(1))

is adjoint orbit of SU(n+ 1) through maximally degenerate generator

λ ∼ diag(−1,−1, ...,−1, n)

up to normalization.
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1.9.2 Functions on O(Λ) & decomposition into harmonics:

G acts on O(Λ)
→ decompose classical algebra of polynomial functions on O(Λ) :

Pol(O(Λ)) = ⊕µ mΛ;µVµ

where mµ;Λ ∈ N ... multiplicity

characterizes degrees of freedom on the space

1.10 Quantized coadjoint orbits embedded in RD

There is a canonical quantization for the above Poisson bracket on adjoint orbit
with suitably quantized orbit.
Fact:
All finite-dimensional irreps V of G are given by highest weight representations,
with dominant integral highest weight Λ ∈ g0

∗

Here g0 ⊂ g is the Cartan subalgebra, i.e. max subalgebra of mutually commuting
(i.e. diagonal) generators.
This means that V = VΛ has a unique highest weight vector |Λ〉 ∈ V with

X+
i |Λ〉 = 0,
H|Λ〉 = H[Λ] |Λ〉

for any (diagonal) Cartan generator H , and all other vectors in V are obtained by
acting repeatedly with lowering operators X−i on |Λ〉.
(recall that the Lie algebra g is generated by rising and lowering operators X±i
together with the Cartan generators.)

e.g. for su(2): irreps characterized by spin, weights = eigevalue of H = J3

Fact:
for compact Lie groups, there is a canonical isomorphism between the Lie algebra
g as a vector space and its dual space g∗, given by the standard Cartesian product
gab = δab on RD (= Killing form).
In particular,

Λ ↔ HΛ (3)

Then coadjoint orbits O(Λ) through Λ are the same as adjoint orbits through HΛ.

Given such a highest weight irrep VNΛ, consider the matrix algebra

AN = End(VNΛ) = Mat(N ), N = dimVNΛ
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G acts naturally on AN via

G×AN → AN
(g,M) 7→ π(g)Mπ(g−1) (4)

where π ... rep. of G on VNΛ → can decompose A into harmonics = irreps:

AN = End(VNΛ) = VNΛ ⊗ V ∗NΛ = ⊕µm̃NΛ;µ Vµ

m̃NΛ;µ ∈ N ... multiplicity
can show:

m̃NΛ;µ = mΛ;µ

for sufficiently large N .
cf. (Hawkins q-alg/9708030, Pawelczyk & Steinacker hep-th/0203110)

moreover, can embed

AN ↪→ AN+1... ↪→ Pol(O(Λ))

preserving the group action and norms.

Hence: ∃ quantization map

Q : Pol(O(Λ))→ AN (5)

Y µ
m 7→

{
Ŷ µ
m, µ < N
0, µ ≥ N

(6)

(schematically)
which respects the group action, the norm and is one-to-one for modes with suffi-
ciently small degree µ.

“correspondence principle”

in practice: rescale as desired
In particular: monomials = Lie algebra generators

Xa := Q(xa) = cNπ(λa) = Xa†

Their commutator reproduces Poisson bracket:

[Xa, Xb] = icN f
abcXc N→∞→ 0 (7)

{xa, xb} = cN fabcxc (8)

polynomial algebra generated by Xa generates full AN = End(VNΛ).
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Choose normalization e.g. such that

XaXa = c2
Nπ(λaλ

a)
!

= R2

here

π(λaλ
a) = C2[NΛ] = (NΛ, NΛ + 2ρ) ∼ N2 ...quadratic Casimir (9)

cN ∼
R

N
(10)

realize harmonics Ŷ µ
m(X) ∼ Y µ

m(x) e.g. as completely symmetric (traceless ...)
polynomials of given degree.

Therefore:

Theorem 1.1. AN = End(VNΛ) provides a quantizationON(Λ) of the coad-
joint orbit O(Λ), viewed as Poisson (symplectic) manifold embedded in RD

with Poisson structure (8).
same d.o.f. at low energies, but intrinsic UV cutoff.
The quantized embedding map is given by

Xa ∝ π(λa)

The symplectic or Poisson structure is quantized such that

(2π)nTr 1l =

∫
ωn

n!

where n = dimO(Λ)

1.10.1 Example: fuzzy CP 2

(Grosse & Strohmaier, Balachandran etal)
recall classical CP 2:

CP 2 = {λ = g−1λ8g, g ∈ SU(3)} ⊂ su(3) ∼= R8 ... (co)adjoint orbit

λ = xaλa satisfies embedding

δabx
axb = 3, dabcxaxb = xc. (11)

harmonic analysis:
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C(CP 2) ∼= ⊕∞k=1 (k, k)

fuzzy version:

AN := CP 2
N := End(VN ,C) = Mat(dN,C) ∼=

N⊕
k=1

(k, k)

VN ... irrep of su(3) with highest weight (0, N), dN = dimVN = (N+1)(N+
2)/2

Xa = cNπN(λa), cN =
3√

N2 + 3N
,

is quantized embedding map

Xa ∼ xa : CP 2 ↪→ R8

can show: satisfies similar constraint

[Xa, Xb] =
i√

N2 + 3N
fabc Xc, (12)

gab XaXb = 3, (13)

dabc XaXb =
N + 3

2√
N2 + 3N

Xc (14)

reduces to (11) for N →∞,
Alexanian, Balachandran, Immirzi and Ydri hep-th/0103023, Grosse &

Steinacker hep-th/0407089

1.11 Laplace operator on fuzzy ON(X):
Let φ ∈ AN ... function on fuzzy ON(X)

Definition 1.3.
�φ := gab[X

a, [Xb, φ]]

where Xa = π(λa) = Xa† ... quantized embedding operators (possibly rescaled).
Recall that g acts via adjoint Jaφ := i[Xa, φ] on AN
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hence
�φ = JaJ

aφ

�Ŷ µ
m = C2[µ]Ŷ µ

m

quadratic Casimir
has same spectrum as classical Laplacian,

�gY
µ
m ∝ C2[µ]Y µ

m

Thus � has the same spectrum on AN as �g on C∞(O(Λ)), up to cutoff.
hence:
⇒ ON(Λ) has the same effective (spectral) geometry as O(Λ).

This is much more general, as we will see.

2 Generic fuzzy spaces
Framework is not restricted to homogeneous spaces.
General setup: D hermitian matrices Xa ∼ xa : M ↪→ RD describe quantized
embedded symplectic space (M, ω)

inherits pull-back metric (geometry), (quantized) Poisson / symplectic structure is
encoded via [Xµ, Xν ] = iθµν

Define matrix Laplace operator onMN by

�φ := gab[X
a, [Xb, φ]]

acting on End(H)
Similarly, let γa, a = 1, ..., D ...Gamma matrices associated to SO(D) acting on
spinors V

{γa, γb} = 2gab

Define matrix Dirac operator by

/D := γa ⊗ [Xa, .].
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acting on V ⊗ End(H).
Arises naturally in matrix models. Its square is given by

/D
2

= � + Σab[Xa, Xb]

where Σab := 1
4
[γa, γb].

(cf. Lichnerowicz formula)
Exercise 7 : check this relation.

These operators define a (spectral) geometry forMN .

2.1 Effective geometry of NC brane
consider scalar field moving on a fuzzy space, governed by “free” action

S[ϕ] = −Tr [Xa, ϕ][Xb, ϕ] gab

∼
∫ √

|θ−1
µν | θµ

′µ∂µ′x
a∂µϕ θ

ν′ν∂ν′x
b∂νϕ gab

=

∫ √
|Gµν |Gµν(x) ∂µϕ∂νϕ (15)

using [f, ϕ] ∼ iθµν(x)∂µf∂νϕ
(assume dimM = 4)

Gµν(x) = e−σθµµ
′
(x)θνν

′
(x) gµ′ν′(x) effective metric

gµν(x) = ∂µx
a∂νx

bgab induced metric on M

e−2σ =
|θ−1
µν |
|gµν |

ϕ couples to metric Gµν(x), determined by θµν(x) & embedding

... quantized Poisson manifold with metric (M, θµν(x), Gµν(x))

Exercise 8 : derive (15) with the above metric Gµν

2.1.1 The matrix Laplace operator

semi-classical limit of above matrix Laplacian:
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Theorem 2.1. (M, ω) symplectic manifold with dimM 6= 2, with
xa : M ↪→ RD ... embedding in RD induced metric gµν and Gµν as above.
Then:

{xa, {xb, ϕ}}gab = eσ�Gϕ

�G = 1√
G
∂µ(
√
GGµν∂νφ) ... Laplace- Op. w.r.t. Gµν

(H.S., [arXiv:1003.4134])

Hence: �φ ∼ −eσ�Gφ(x)

For coadjoint orbits: G ∼ g by group invariance, and � ∼ �g follows.

2.2 A degenerate fuzzy space: Fuzzy S4

H. Grosse, C. Klimcik and P. Presnajder, hep-th/9602115
(sketch; for more details see e.g.
Castelino, Lee & Taylor hep-th/9712105 or H.S. arXiv:1510.05779 )

Classical construction:

Consider fundamental representation C4 of SU(4). Acting on a reference point
z(0) = (1, 0, 0, 0) ∈ C4, SU(4) sweeps out the 7-sphere S7 ⊂ R8 ∼= C4

→ Hopf map

S7 → S4 ⊂ R5 (16)

zα 7→ xi = z∗α(γi)
α
βz

β ≡ 〈z|γi|z〉 = tr(Pzγi), Pz = |z〉〈z| (17)

where γi are the so(5) gamma matrices.
Hence S7 is a bundle over S4 with fiber S2.
Recall CP 3 = S7/U(1). Can quantize this! →

Fuzzy construction:

Recall: su(4) ∼= so(6) generated by λab ∈ so(6)
Start with fuzzy CP 3 ⊂ R15 ∼= su(4), generated by

Mab = πH(λab)

acting onHN = (0, 0, N), for 1 ≤ a < b ≤ 6

Hopf map corresponds to composition

xi : CP 3 → R15 Π→ R5
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where Π is projection of so(6) to subspace spanned by λi6, i = 1, ..., 5

in other words: Fuzzy S4
N is generated by

X i :=Mi6 End(H) (18)

forH = (0, 0, N) satisfy
5∑

a=1

XaXa =
1

4
N(N + 4)1l

[Xi, Xj] =: iMij

[Mij, Xk] = i(δikXj − δjkXi) (19)

Is fully SO(5)-covariant fuzzy space, sinceMij, i, j = 1, ..., 5 generate so(5).

Snyder-type fuzzy space!

Can see: local fiber is fuzzy S2
N+1.

2.3 A self-intersecting fuzzy space: squashed CP 2

J. Zahn, H.S. : arXiv:1409.1440

classical construction:

Recall coadjoint orbit CP 2 ⊂ R8 ∼= su(3)

Consider projection map

Π : R8 ∼= su(3)→ R6

projecting along the (simultaneously diagonalizable) Cartan generators λ3, λ8.

Then
xa : CP 2 → R8 Π→ R6

sefines a 4-dimensional subvariety of R6 with a triple self-intersection at the ori-
gin

Fuzzy construction:

generators
Xa = πH(λa), a = 1, 2, 4, 5, 6, 7 ∈ End(H)

acting onH = (0, N) generate fuzzy squashed ΠCP 2
N

arises as fuzzy extra dimensions in N = 4 SYM with soft SUSY breaking poten-
tial, and in an analogous modified IKKT matrix model
(3 generations etc.)
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2.4 lessons
• algebra A = End(H) ... quantized algebra of functions on (M, ω)

no geometrical information (not even dim)

dim(H) = number of “quantum cells”, (2π)nTrQ(f) ∼ VolωM

• Poisson/symplectic structure encoded in C.R.

• every non-deg. fuzzy space locally ≈ R2n
θ (cf. Darboux theorem!)

• geometrical info encoded in specific matrices Xa, a = 1, ..., D:

Xa ∼ xa :M ↪→ RD ...embedding functions

contained e.g. in matrix Laplacian � = [Xa, [Xb, .]]δab

(or in coherent states, see below).
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3 Lecture II: Applications: NC field theory & ma-
trix models

goal: formulate physical models on fuzzy spaces
scalar field theory, gauge theory, (“emergent”) gravity
issues:
quantization ⇒ UV/IR mixing due to ∆xµ∆xν ≥ L2

NC

→ strong non-locality, can be traced to string states
→ selects well-behaved model: IKKT model =maximal SUSY matrix model

(Yang-Mills) Matrix Models, IKKT model

• describes dynamical fuzzy branes = submanifoldsM ↪→ R10

interpreted as physical space-time

• NC gauge theory, dynamical geometry & emergent gravity

• closely related to string theory, introduced as non-perturbative description
of string theory on R10

• well-behaved under quantization, due to maximal SUSY

3.1 Scalar field theory on S2
N

consider AN = Mat(N,C) ... (Hilbert) space of functions on S2
N

action for free real scalar field φ = φ†:

S0[φ] = 4π
N

Tr(1
2
φ�φ+ 1

2
µ2φ2)

∼
∫
S2(

1
2cN

φ∆gφ+ 1
2
µ2φ2)

harmonic (”Fourier”) decomposition

φ =
∑
lm

φlmŶ
l
m, φ†l,m = φl,−m

(finite!)
S0[φ] = 4π

N

∑
l,m(φl,m(l(l + 1) + µ2)φl,m)

interacting real scalar field:

S[φ] = 4π
N

Tr(1
2
φ�φ+ 1

2
µ2φ2 + λφ4)

=
∑
φl,mφl,−m(l(l + 1) + µ2) + λ

∑
φl1m1 · · ·φlnmnVl1..l4;m1...m4 ,

Vl1..l4;m1...m4 = Tr(Ŷ l1
m1
...Ŷ l4

m4
)

... deformation of classical FT on S2, built-in UV cutoff
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3.2 scalar QFT on S2
N

Feynman ”path“ (matrix) integral approach

Z[J ] =
∫
Dφe−S[φ]+TrφJ

〈φl1m1 · · ·φlnmn〉 =
∫

[Dφ]e−S[φ] φl1m1
···φlnmn∫

[Dφ]e−S[φ]

= 1
Z[0]

∂n

∂J1...∂Jn
Z[J ]|J=0, [Dφ] =

∏
dφlm

φ =
∑
φlmŶ

l
m

... deformation & regularization of (euclid.) QFT on S2,
finite version of path integral,

UV cutoff

free QFT:

S0[φ] =: Tr
1

2
φDφ =

1

2

∑
φl1−m1(l(l + 1) + µ2)φl1m1 (20)

Gaussian integral,

Z[J ] =

∫
dφe−Tr(

1
2
φDφ−φJ) =

∫
dφe−Tr(

1
2

(φ−D−1J)†D(φ−D−1J)+ 1
2
TrJD−1J

=
1

N
e

1
2
TrJD−1J (21)

propagator:

〈φl1m1φl2m2〉 = 1
Z

∫ ∏
dφlm φl1m1φl2m2e

−
∑
φl,mφl,−m(l(l+1)+µ2)

= 1
Z[0]

∂2

∂J1∂J2
Z[J ]|J=0

= δl1l2δm1,−m2

1
l(l+1)+µ2

as in commutative case, up to cutoff

→ free field theory coincides with undeformed one.

interacting QFT:

Z[J ] =
∫
Dφe−S0[φ]−Sint[φ]+TrφJ

= e−Sint[∂J ]
∫
Dφe−S0[φ]+TrφJ

= e−Sint[∂J ]Z[J ]

〈φI1 ...φI2n〉 = 1
Z[0]

∂n

∂J1...∂Jn
e−Sint[∂J ]Z[J ]|J=0
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perturbative expansion ⇒ Wick’s theorem,

〈φI1 ...φI2n〉 =
∑

contractions

〈φφ〉...〈φφ〉

vertices: e.g.
Sint = 1

4!
Trφ4 = TrV,

V = λ
∑
φl1m1 · · ·φlnmnVl1..l4;m1...m4

finite, but distinction planar↔ nonplanar diagrams

results: hep-th/0106205

• large phase factors, interaction vertices rapidly oscillating for l1
R
l2
R
≥ Λ2

NC

(loop effects probe area quantum ∆A ∼ 1/N )

• 1-loop effective action

Sone−loop = S0 +

∫
1

2
Φ(δµ2 − g

12π
h(∆̃))Φ + o(1/N)

with

h(l) = −1

2

1∫
−1

dt
1

1− t
(Pl(t)−1) = (

l∑
k=1

1

k
), δµ2 =

g

8π

N∑
j=0

2j + 1

j(j + 1) + µ2

Chu Madore HS [hep-th/0106205]

does NOT agree with usual QFT on S2,

”anomalous contributions“ to quantum effective action

(=finite version of UV/IR mixing)

central feature of NC QFT, obstacle for perturb. renormalization

Minwalla, V. Raamsdonk, Seiberg hep-th/9912072]

• new physics, non-local

29



4 Matrix models and NC gauge theory

4.1 Matrix model for S2
N

S[X] = 1
g2

Tr
(
[Xa, Xb][Xa, Xb]− 4iεabcX

aXbXc − 2XaXa

)
= 1

g2
Tr ([Xa, Xb]− iεabcXc)([Xa, Xb]− iεabcXc)

= 1
g2

TrF abFab ≥ 0

where Xa ∈ Mat(N,C), a = 1, 2, 3 and

F ab := [Xa, Xb]− iεabcXc field strength

solutions (minima!):

F ab = 0 ⇔ [Xa, Xb] = iεabcXc

Xa = λa, λa ... rep. of su(2)

any rep. of su(2) is a solution! Xa =


λa(M1) 0 . . . 0

0 λa(M2) . . . 0
...

... . . . ...
0 0 . . . λa(Mk)


concentric fuzzy spheres S2

Mi
!

geometry & topology dynamical !
expand around solution:

Xa = λa + Aa ∈ Mat(N,C)

F ab = [λa, Ab]− [λb, Aa]− iεabcAc + [Aa, Ab] (∼ “dA+ AA′′)

can be interpreted in terms of{
U(1) gauge theory on S2

N (tang. fluct. if) λaAa = 0

coupled to scalar field DµφD
µφ (radial fluctuations) Xa = λa(1 + φ)

however:
radial deformation = deformation of embedding, geometry!

geometry ↔ NC gauge theory ?!

above matrix model describes dynamical fuzzy space
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4.2 Gauge theory on R4
θ

Let [X̄µ, X̄ν ] = iθ̄µν , X̄µ ∈ A = L(H) (Moyal-Weyl) consider fluc-
tuations around R4

θ:

Xµ = X̄µ − θ̄µν Aν , Aν ∈ A

Define derivative operator on R4
θ by [X̄µ, φ] = iθµν∂νφ →

[Xµ, Xν ] = iθ̄µν − iθ̄µµ′ θ̄νν′ (∂µ′Aν′ − ∂ν′Aµ′ + i[Aµ′ , Aν′ ])

= iθ̄µν − iθ̄µµ′ θ̄νν′ Fµ′ν′

Fµν(x) ... u(1) field strength

Exercise 12 : check this formula (and the gauge transformation law below)

Yang-Mills action:

SYM [X] = Tr[Xµ, Xν ][Xµ′ , Xν′ ]δµµ′δνν′

= ρ
∫
d4xFµνFµ′ν′ Ḡ

µµ′Ḡνν′ + ∂()

(up to surface term Tr[X,X] =
∫
F → 0 )

... NC U(1) gauge theory on R4
θ,

effective metric

Ḡµν = θ̄µµ
′
θ̄νν

′
δµ′ν′ , ρ = |θ̄−1

µν |1/2

gauge transformations:

Xµ → UXµU−1 = U(X̄µ − θ̄µν Aν)U−1 = X̄µ + U [X̄µ, U−1]− θ̄µνUAνU−1

= X̄µ − θ̄µν (U∂νU
−1 + UAνU

−1)

infinitesimal U = eiΛ(X), δAµ = i∂µΛ(X) + i[Λ(X), Aµ]
invariant under gauge trafo

Fµν → UFµνU
−1 ∼ symplectomorphism

Yang-Mills matrix model SYM describes U(1) gauge theory on R4
θ
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no “local” observables ! (need trace)

coupling to scalar fields:

consider

S[X,φi] = −Tr
(
[Xµ, Xν ][Xµ′ , Xν′ ]δµµ′δνν′ + [Xµ, φ][Xµ′ , φ]δµµ′

)
= ρ

∫
d4x

(
FµνFµ′ν′ Ḡ

µµ′Ḡνν′ +DµφDνφ Ḡ
µν
)

[Xµ, φ] = iθ̄µν(∂ν + i[Aµ, .])φ =: iθ̄µνDµφ

gauge transformation
φ→ UφU−1 (adjoint)

same form as

S[X] = Tr[Xa, Xb][Xa′ , Xb′ ]δaa′δbb′ , a = 1, ..., 4+1

more generally: D = 10 matrix model around R4
θ:

S[X] = −Tr[Xa, Xb][Xa′ , Xb′ ]δaa′δbb′ = 1
(2π)2

∫
R4
θ
d4x ρ

(
Ḡµµ′ Ḡνν′ Fµν Fµ′ν′ + Ḡµνηµν

+2 Ḡµν Dµφ
iDνφ

jδij + [φi, φj][φi
′
, φj

′
]δii′δjj′

)
... same as bosonic part of N = 4 SYM!

generalization to U(n):
new background

Xa ⊗ 1ln

naturally interpreted as n coincident branes. fluctuations(
Xµ

φi

)
=

(
X̄µ ⊗ 1ln

0

)
+

(
Aµ
φi

)
,

it is easy to see that

Aµ = −θµνAν,α(X̄)λα, φi = φiα(X̄)λa

... u(n)- valued gauge resp. scalar fields on R4
θ, denoting with λα a basis of u(n).

The matrix model

S = −Tr[Xa, Xb][Xa′ , Xb′ ]δaa′δbb′ = 1
(2π)2

∫
R4
θ
d4x ρtr

(
Ḡµµ′ Ḡνν′ Fµν Fµ′ν′ + Ḡµνηµν1ln

+2 Ḡµν Dµφ
iDνφ

jδij + [φi, φj][φi
′
, φj

′
]δii′δjj′

)
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where tr() ... trace over the u(n) matrices,
Fµν ... u(n) field strength.
... u(n) Yang-Mills on R4

θ

note:

• extremely simple mechanism:

gauge fields = fluctuations of dynamical matrices Xµ → Xµ +Aµ

“covariant coordinates”

works only on NC spaces!

• matrix models Tr[X,X][X,X] ∼ gauge-invariant YM action

• generalized easily to U(n) theories but

U(1) sector does not decouple from SU(n) sector

• one-loop: UV/IR mixing → not QED, problem

except in N = 4 SUSY case: finite (!?)

• closer inspection: U(1) sector is part of geometric sector,

→ emergent “gravity“.
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