Lecture lll: Coherent states, loops and
effective actions in NC field theory

Harold Steinacker

Department of Physics, University of Vienna
Zcosk Action MP 1405
- l I I F Quantum Structure of Spacetime

H.S., arXiv:1606.00646

H. Steinacker Lecture lll: Coherent states, loops and effective actions in NC field theory



IKKT model

The (maximally SUSY) IKKT matrix model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996
SIX W = =T (IX2, XOUX" X0 Tnaw e+ WyalX?, 1)

X2 =Xxal ¢ Mat(N,C), a=0,..,9 (N = o)

V ... Majorana-Weyl fermions

1) nonpert. def. of 1B string theory (on R'%) (IKKT)
2) N =4 SUSY Yang-Mills gauge thy. on “noncommutative“Rg

Symmetries:
@ gauge symmetry X2 — UXaU~', U e U(H)

@ SO(10) rotations X2 — A2X?, similarly spinor
translations X2 — X4 4 ¢21

@ SUSY
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IKKT model

@ pre-geometric; geometry emerges on solutions

@ solutions = (typically) fuzzy spaces  (="branes®)

fluctuations around solutions = physical fields

@ quantization well-behaved because of maximal SUSY
leads to interaction between branes:
(non-local UV/IR mixing) = IIB supergravity in R0
(as predicted in string theory)
@ conjecture: dynamics of brane geometry (for suitable branes):
— ("emergent”) 4D gravity
fuzzy Sy seemstowork ! H.S. arXiv:1606.00769
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IKKT model

Quantization of matrix models:

Z = / axadvy e SIX1-Slv]

similarly for correlation functions
...non-perturbative!

@ includes integration over geometries !

@ probably ill-defined for generic models

(UV/IR mixing — strongly non-local physics)
@ well-behaved (only?) for IKKT model, D = 10 due to max. SUSY

@ non-trivial gauge theory can arise from fuzzy extra dims
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IKKT model

background solutions: generic fuzzy space

X%~ x3: M — R
fluctuation around background X% — X2+ A3(X?)
expand bare action to O(A?):
SIX+A] = S[IX]+ 5 Tf(ZAa(D + 1) Xa + Aa((D + p?)85 + 2102, .1 - [X2, [X°, -]])Ab}
with i©2b = [Xa, X?]

e.g. one-loop effective action = Gaussian approx. around background

Z[X] = / dAdwe SXHAV] — g—lulX]

Gauss
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Coherent states

Coherent states & applications
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Coherent states

Coherent states & applications

recall fuzzy S

(X3 XP] = ic®°Xe, XX, = %(/\/2 -1) = R.

X2 = nn(J?) ... irrep of SU(2) on H = CN

N—1
functions on S% ... Ay = End(H) = @ (2/+1)
1=0
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coherent states on S,

S? as group orbit:  let p € S? ... north pole

sU@R) - 82
g = g-p=x
stabilizer £ ¢ SU(2) = S? = SU(2)/U(1)

coherent states on S%;:

|p) € Hn ... highest weight vector in H

def.
[xX) = 9gx-|p), gx € SU(2) ... coherent states
x2 = (x|X3x) = (X?) e &, XXy = T(N—=1)2=:r3

|x) ... one-to-one correspondence to points x on S? (up to phase)
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coherent states on S,

coherent states are optimally localized, minimize uncertainty

0 = 3 ((XF = (X®)P)
= 2a(PIX?X%|p) — (| X?|p){p|X|p)
1

_ g2 _ 2 _ N-
= By—-n="%
~ 2 R2
~ 2R

. 2 2
= Ly =R

Exercise 9 (challenge) ‘: show that the highest weight states

minimize the uncertainty §°.
Hint: for given state |)) consider the vector X(v) := (| X2|v) and

rotate it such that X(v/) points along &,
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coherent states on S,

overlap of coherent states:

[(X|y) P = (F)NT

¢

Q

exp(—30*(N—1)) = - n(x,y)
£(X,Y)

char. angle ¢n = ﬁ
char. angular momentum / ~ /N
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coherent states on S,

overcompleteness:

dmH

1,=c ax|x){x CN = ——
" "’/52 X)X, N~ Nols?

(by SU(2) invariance)
trace of any operator O € End(H)

trO

dm#* [
= Vols? /3 dx(x|O1x)

generalizes to any quantized coadjoint orbit
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coherent states on S,

relation with R2, Q.M: focus at north pole p € S?

2
rescale R — oo s.t. § = 28 = const

(X, X = i9e"  +O()

==

coherent state at “origin” = north pole:
|0) = |p), al0) ~ (X1 +iX2)|0) =0 highest weight state
shifted (rotated) coherent states:
|x) = Uy,|0) where Uy, = exp(ig;iJ'), x' = Rélg;

localization: ,
_ |x—x/ |

<X’|X> = efixfafixlje 0

covers area Ay =0

H. Steinacker Lecture lll: Coherent states, loops and effective actions in NC field theory



coherent states on S,

operators and symbols

For an operator O € End(H), define symbol of O as

O(x) = (x|0[x)
... de-quantization of O, “semi-classical limit”

conversely:

0= cN/ dxO(x)|x) (x|
SZ
in particular

v
Y

CN /32 de,’n(x)\x) (x|

however very delicate for large momenta, misleading in UV
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coherent states on S,

wavefunctions and UV / IR sectors

@ IR (“semi-classical”) sector:

non-local matrix elements decay at distances |x — y| ~ Lnc
1 <
(x|Oly) = (X|OIX) x|y} o (XIO1X) on(x, )
i.e. O(x) varies slowly on uncertainty scale § = Lc

max. angular momentum / < v/N, uncertainty A% = [, J

optimally localized semi-classical function
) (pl =: o n(X; P)
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coherent states on S,

@ UV sector:
most O € End(H) have | > +/N, not in semi-classical sector.

best described by non-local string states
Uny = X)yl € End(H)
most extreme “function” on S&:
Yai = Ip){-pl.

has Iyy = N, maximally de-localized

most NC “functions” are non-local
= non-local contributions in loops!
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coherent states on S,

Quasi-coherent states

analogous (quasi-) coherent states exist on generic fuzzy spaces My
L. Schneiderbauer HS arXiv:1601.08007; cf. Ishiki arXiv:1503.01230

Add a “point probe” brane py at x € RP,

matrix Laplacian for background My U py with point brane:

a
xa—()(() )?a) € End(H @ C), a=1,...,D

string sector = off-diagonal “functions” ¢ € End(# & C) connecting
My with py, of the form

0 --- 0

where |¢) € H.
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coherent states on S,

Consider energy (=Laplacian) of these string states:

Ox® = 3,[%%[X3,0]] = 3, (XX 4+ dXaXT — 2X9DX?)

0 --- 0
I R S e
- 0 .- 0 a

(0] (X2 — x?)? 0

a

... shifted harmonic oscillator for |¢) on M
(recall: My has structure of phase space in QM,
cf. P24+ Q% =Y X? ... harmonic oscillator at origin)

a
x2= <)(() )?a>, a=1,...,d
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coherent states on S,

Laplacian for string sector reduces to
d

e =3 (X7 xY?

a=1
consider quadratic form
Jr(@10x®) = (9|0x[8) = X, (AsX?)? + 3, (6l X3|9) — x2)?
= 0%(¢) + [X(9) — X|?
=: E(X)

Check this | Here
X(¢) = (6| X|0)

and

2(0) =Y (dl(X9P]6) — (¢1X2|)% = > (BI(X? — x*(¢))?|¢)

a a

is the dispersion of the state ¢.
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coherent states on S,

Quasi-coherent states

Let X be a point in target space RP. Then the quasi-coherent state(s)
at X are defined to be the ground state(s) W of Oy, and their
eigenvalue

OxV = E(X)V

is the displacement energy.

Quasi-coherent states minimize
52(¢) + [X(¢) — X|?> = E(X) = Dispersion + displacement?

Perelomov coherent states are quasi-coherent states.

denote set of quasi-coherent states by Sg (possibly with cutoff
prescription, e.g. upper bound on E)
Then

M= X(Sg) = {(WIX?y); v eSet CRP

provides a semi-classical picture of the (generic) fuzzy space.
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coherent states on S,

example: fuzzy shere S3

The quasi-coherent state at X € R® coincides with the Perelomov
coherent state on S%, which is closest to X € R3.

and
M =X(Sg) = S?
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coherent states on S,

Measuring finite Quantum Geometries via

Quasi-Coherent States

Compute E(x) for all x € RP.

For x € M, expect Hessian H,, = V,V, E to have 2n = dim M small
eigenvalues, clearly separated from the remaining higher EV’s (which
measure the transversal separation).

The corresponding 2n eigenvectors of H,,,, define the tanget space of
M at x.

Can measure the location of the brane M c RP by scanning target
space RP and looking for (“quasi-”) minima of E£(X), by following
these tangential directions, possibly with cutoff

Mathematica package BProbe,
https://github.com/Ischneiderbauer/BProbe/tree/v0.9.0
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string states

string states

Iso Kawai Kitazawa hep-th/0001027; H.S., arXiv:1606.00646

) = vy =1yl € End(H)
Gl = vly=wK
momentum operators
PO = [X3,0],
00 = PaP0

expectation values
(;| P2 |j(/) = 7vZJy.,x[Xaa 'l/)x,y] = i(X) - i(y)
GIPoPaly) = iy x[X2[Xa ey = Ex

Evy = (X(x) — X(y))? + 247

energy of string state = length 2+ zero point energy

H. Steinacker Lecture lll: Coherent states, loops and effective actions in NC field theory



string states

general matrix elements

1 PP

JX/;) = (XIXEXAX) YY) 4+ (XX (YIXEXAy) — 2(x| X3 X" (y' | Xaly)
(202 + X2 + 72 — 2%7)) (X|X') (' |y)
Exy (XIX")y'|y)

Q

Q

nearly diagonal

good localization properties in both position and momentum !! )
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string states

propagator

claim:

_ _ 1 _
M

is excellent approximation to the propagator
because:

@+ @A) = Gy ) et (@) )
& [ ax'ay' ) gz By + )X 0 01Y)

%)

completely regular since E,, > A2

X

%
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Trace formulas

trace formula for End(#H)

(dim#)?
Trendg)O = (VoMY / dxdy (5| O[})
MxM
proof:
rhs = unique functional on End(End(#)) invariant under G, x Gg
=Tr
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Trace formulas

example:
2
TI‘End('H)[Xa, [Xa, ]l = (VrQIT)Z f dXdX/tr(|X><X/|)(‘X/a7Xa|2+2A2)(‘X/><X‘)
S2x 82
- % [ dxdx/(|x'% — x32 +242)
) S2x 82
= % [ ax(lxi(e) - xA(x)2 +282)
52

~ o M) sz dx(|es — x| + O(1))
= IN2(N—1)2(1+0(4))
using r2 = x3x, = (N —1)? and A% ~ §
good agreement with exact result:
N—1

Trena(3) [ X%, [Xa, ] = Zj(j+ )2/ +1) = %NZ(N2 —1).
j=0
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Trace formulas

more generally:

for any smooth function f

Treng()f(0) = (\,0'}'7; [ OX [ dy f(RZ|Xx — y|? +2A2)
= Vols2 132 dxf(rd|es — x|? + 2A2?)
W Jo dosindf(r3(1 — cos 0)? + sin® 0) + 2A2)
— N7 duf(2r3(1 — u) + 242)
~ oy di2ji(? +20%) & SN (2 + (i + 1) + 24%)
= T, f(Og +24%)
= Ty, f(Og)

= 27k

shift by 2A2 = N — 1 negligible for N > 1
UV dominates!
works because spec(01) = spec(Og) also in UV
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One-loop propagator

one-loop propagator for ¢* on S%

Sl6) = (300 + 126+ L6*) = Sof] + Sl

1-loop effective action (= Gaussian approx.)

Felo] = SI¢] + $Trenar log (S"[4])
(1, 8"6lw) = yer((0 + u2)w + §622 + Guigno)

expanded:
r17loop[¢)] = Trlog(.(O0+ /Lz). + %(bz + %¢¢)
Trlog(o + 42) + Tr(. (80P + %qb.qb)) + 0(¢%)
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One-loop propagator

assume ¢ = ¢(X) slowly varying, IR regime
= ¢yx = ¢(¥)Yyx in string basis
Tr(.¢2) = %M Idedytr(l/)yﬁxqbzwx,y)

= Vollzlj\/l) Jax (x|¢?|x) .
M

H. Steinacker Lecture lll: Coherent states, loops and effective actions in NC field theory



One-loop propagator

assume ¢ = ¢(X) slowly varying, IR regime

= ¢y = ¢(¥)yx in string basis

Tr(02) = ot S Oxdy vy xdPi,y)
L
= VOIQIM) j\{ldx<X|¢>2|x).
Similarly, “planar” contribution
(o ¢?) = %M%dxdyu(wyﬁx(m+,L2)*1(¢2wx,y))
N2

%

1 2
Vol(M)2M[MdXdyr,%IX—y\2+2A2+p2 tr(Yy x"x,y)

_ N? 1 2
= VoI(M?) M.XfMdXdyW<X\¢ )

= Vom/t) J dx ?(x)
M
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One-loop propagator

1-loop “planar” mass renormalization

2 _ N2 d 1
K VoI(7) é[;yr,fl\e—y\brﬁ?
N2 .ﬂ-d . 1
= = ¥ siny .
2ry jo (1—00519)2-&-sin'192+‘r‘72

N

= 2[1 o 2u+p

N

Z 2j+1

L f(j+1)+p?
j=0
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One-loop propagator

“nonplanar” contribution

Te((O+12)'66) = wtep fdedytr(wyxmw) (b))
= %@MIMMV XI(0 + 12) " 6lx) ([6y)

2

_ N g
- VoI(M)ZM;{MdXdy,—ﬂX Y\2+M2¢( )QS( )
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One-loop propagator

one-loop quantum effective action:

g 1 2 2, o(x)e(y) 4
Si-oon ~ S0+ § vt A{ o0 + ¢ o / oy e O
long-range non-locality ~ from UV sector (UV/IR mixing)

applies to any compact fuzzy space
check for S2,: agrees with traditional mode expansion

1 -
Stton = So+ [ 5 Ok~ 1-h(EN)® + o(1/N)

Chu Madore HS hep-th/0106205

where
|

1 £
[ et -n=3

—1

x|

less transparent, requires asymptotics of 6J symbols etc.
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One-loop propagator

Moyal-Wey! plane limit R2 R? =r?R = Mo

~ N (X)B(y)
e~ 6v§(M)2 J Xy 7
= 6;2792 f dxdy \f (Xy)(f+,3

where VolM = 47TF1’2 = 7TN¢9

plane wave basis ¢(x) = [ SKg, (e + e~kx).

67202 j dqub(k)z j dzz ‘Z|21+u2 eikizl

Q

/k9
26 p/

| Pko(k)? [ Ppyrarre

g
67202

replacing z' = 0/p;, and G/ = 67 i/ 5.,
familiar form in NCFT, IR divergence for k — 0 from UV loop,

UV/IR mixing
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One-loop propagator

significance of UV/IR mixing:

UV sector in loops = virtual long strings |x) (y|
lead to long-range non-locality in [ dxdy%
MM !

interpret NCFT as (non-critical) string theory!
open strings beginning and ending on D-branes

universal, same on any fuzzy space M, any dimension
accumulates at higher loops, inacceptable as fundamental theory
except in SUSY case: cancellations!
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One-loop propagator

higher loops

t'Hooft double line formalism, ribbon graphs

lines labeled by positions x, preserved by propagators (!!)
much simpler than in ordinary QFT, directly in position space !

H.S., arXiv:1606.00646
(to be developed)
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One-loop propagator

summary & outlook

@ fuzzy spaces = noncommutative spaces embedded in RP
realized by (finite-dim.) matrices X2, a=1,...,D

@ can realize generic geometries

@ physical models naturally formulated as matrix models

@ coherent states |x), “string states” |x)(y| useful

@ UV/IR mixing understood due to long strings mediating
interactions

@ supersymm. IKKT model — mild non-locality (=I1B supergravity)
4D gravity should (?!!) emerge on suitable branes (Sy))

— candidate for theory of fundamental interactions including
gravity

H. Steinacker Lecture lll: Coherent states, loops and effective actions in NC field theory



	TITLE
	Main Part
	IKKT model
	Quantization of M.M.

	Coherent states
	coherent states on S2N
	string states
	Trace formulas
	One-loop propagator


