Lecture III: Coherent states, loops and effective actions in NC field theory

Harold Steinacker

Department of Physics, University of Vienna

H.S., arXiv:1606.00646

H. Steinacker

Lecture III: Coherent states, loops and effective actions in NC field theory

The (maximally SUSY) IKKT matrix model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$S[X,\Psi] = -\operatorname{Tr}\left([X^a, X^b][X^{a'}, X^{b'}]\eta_{aa'}\eta_{bb'} + \overline{\Psi}\gamma_a[X^a, \Psi]\right)$$

 $X^a = X^{a\dagger} \in Mat(N, \mathbb{C}), \quad a = 0, ..., 9 \quad (N \to \infty)$

W ... Majorana-Weyl fermions

 $\begin{cases} 1) \text{ nonpert. def. of IIB string theory (on } \mathbb{R}^{10}) & (IKKT) \\ 2) \mathcal{N} = 4 \text{ SUSY Yang-Mills gauge thy. on "noncommutative"} \\ \mathbb{R}^4_{\theta} \end{cases}$

Symmetries:

- gauge symmetry $X^a \rightarrow UX^aU^{-1}$, $U \in U(\mathcal{H})$
- SO(10) rotations $X^a \to \Lambda^a_b X^a$, similarly spinor translations $X^a \rightarrow X^a + c^a \mathbf{1}$
- SUSY

< ロ > < 同 > < 回 > < 回 > .

IKKT model	Coherent states	coherent states on S_N^2	string states	Trace formulas	One-loop propagator

- pre-geometric; geometry emerges on solutions
- solutions = (typically) fuzzy spaces (="branes") fluctuations around solutions = physical fields
- <u>quantization</u> well-behaved because of maximal SUSY leads to <u>interaction</u> between branes: (non-local UV/IR mixing) \equiv IIB supergravity in \mathbb{R}^{10}

(as predicted in string theory)

4 周 ト 4 三 ト 4 三

• conjecture: dynamics of brane geometry (for suitable branes):

 \rightarrow ("emergent") 4D gravity

fuzzy S_N^4 seems to work ! H.S. arXiv:1606.00769

Quantization of matrix models:

$$Z = \int dX^a d\Psi \, e^{-S[X] - S[\Psi]}$$

similarly for correlation functions ...non-perturbative!

- includes integration over geometries !
- probably ill-defined for generic models

(UV/IR mixing \rightarrow strongly non-local physics)

- well-behaved (only?) for IKKT model, D = 10 due to max. SUSY
- non-trivial gauge theory can arise from fuzzy extra dims

background solutions: generic fuzzy space

 $X^a \sim x^a : \mathcal{M} \hookrightarrow \mathbb{R}^{10}$

fluctuation around background $X^a \rightarrow X^a + \mathcal{A}^a(X^a)$ expand bare action to $\mathcal{O}(\mathcal{A}^2)$:

 $S[X + A] = S[X] + \frac{2}{g^2} Tr \left(2A^a (\Box + \mu^2) X_a + A_a ((\Box + \mu^2) \delta_b^a + 2i[\Theta^{ab}, .] - [X^a, [X^b, .]]) A_b \right)$ with $i\Theta^{ab} = [X^a, X^b]$ e.g. one-loop effective action = Gaussian approx. around background

$$Z[X] = \int_{\text{Gauss}} d\mathcal{A} d\Psi e^{-S[X+\mathcal{A},\Psi]} = e^{-\Gamma_{\text{eff}}[X]}$$

= nar

s Trace formulas

mulas One-lo

One-loop propagator

Coherent states & applications

recall fuzzy
$$S_N^2$$
:

$$[X^a, X^b] = i\varepsilon^{abc}X^c, \qquad X^a X_a = \frac{1}{4}(N^2 - 1) = R_N^2$$

$$X^a = \pi_N(J^a) \quad \dots \text{ irrep of } SU(2) \text{ on } \mathcal{H} = \mathbb{C}^N$$
functions on $S_N^2 \dots \mathcal{A}_N = End(\mathcal{H}) = \bigoplus_{l=0}^{N-1} (2l+1)$

H. Steinacker

Lecture III: Coherent states, loops and effective actions in NC field theory

▲□ ► < E ► < E</p>

One-loop propagator

Coherent states & applications

recall fuzzy S_N^2 :

$$[X^a, X^b] = i\varepsilon^{abc}X^c, \qquad X^aX_a = \frac{1}{4}(N^2 - 1) = R_N^2.$$

$$X^{a} = \pi_{N}(J^{a}) \quad ... \text{ irrep of } SU(2) \text{ on } \mathcal{H} = \mathbb{C}^{N}$$

functions on $S_{N}^{2} \dots \mathcal{A}_{N} = End(\mathcal{H}) = \bigoplus_{l=0}^{N-1} (2l+1)$

- < 🗇 > < 🖻 > < 🖻

IKKT modelCoherent statescoherent states on S_N^2 string statesTrace formulasOne-loop propagator $\underline{S^2}$ as group orbit:let $p \in S^2$... north pole $SU(2) \rightarrow S^2$ $g \mapsto g \cdot p =: x$

stabilizer $\mathcal{K} \subset SU(2) \Rightarrow S^2 \cong SU(2)/U(1)$

coherent states on S_N^2 :

 $|\mathbf{p}\rangle \in \mathcal{H}_N \ ... \ highest weight vector in <math>\mathcal{H}_N$ def.

 $egin{array}{rll} |x
angle &=& g_x \cdot |p
angle, & g_x \in SU(2) \ ... \ {
m coherent \ states} \ x^a &=& \langle x|X^a|x
angle \equiv \langle X^a
angle \, \in S^2, & x^a x_a = rac{1}{4}(N-1)^2 =: r_N^2 \end{array}$

 $|x\rangle$... one-to-one correspondence to points x on S² (up to phase)

= na(~

coherent states are optimally localized, minimize uncertainty

$$\delta^{2} := \sum_{a} \langle (X^{a} - \langle X^{a} \rangle)^{2} \rangle$$

= $\sum_{a} \langle p | X^{a} X^{a} | p \rangle - \langle p | X^{a} | p \rangle \langle p | X^{a} | p \rangle$
= $R_{N}^{2} - r_{N}^{2} = \frac{N-1}{2}$
=: $L_{NC}^{2} \approx \frac{2}{N} R_{N}^{2}$

Exercise 9 (*challenge*): show that the highest weight states minimize the uncertainty δ^2 .

Hint: for given state $|\psi\rangle$ consider the vector $\vec{x}(\psi) := \langle \psi | X^a | \psi \rangle$ and rotate it such that $\vec{x}(\psi)$ points along \vec{e}_z

A (10) < A (10) < A (10) </p>

overlap of coherent states:

$$\begin{aligned} |\langle x|y\rangle|^2 &= \left(\frac{1+x\cdot y}{2}\right)^{N-1} &\approx & \exp(-\frac{1}{4}\phi^2(N-1)) = \frac{1}{c_N}\,\delta_N(x,y) \\ \phi &= & \measuredangle(x,y) \end{aligned}$$

char. angle $\phi_N = \frac{\pi}{\sqrt{N}}$ char. angular momentum $I \sim \sqrt{N}$

・日・ ・ ヨ・・

-

overcompleteness:

$$\mathbf{1}_{\mathcal{H}} = c_N \int_{S^2} dx |x\rangle \langle x|, \qquad c_N = rac{\dim \mathcal{H}}{\operatorname{VolS}^2}$$

(by SU(2) invariance)

・ 同 ト ・ ヨ ト ・ ヨ

trace of any operator $\mathcal{O} \in End(\mathcal{H})$

$$\mathrm{tr}\mathcal{O} = \frac{\mathrm{dim}\,\mathcal{H}}{\mathrm{VolS}^2}\,\int_{\mathcal{S}^2}\,\mathrm{d}x\langle x|\mathcal{O}|x\rangle$$

generalizes to any quantized coadjoint orbit

IKKT model Coherent states coherent states on S_N^2 string states Trace formulas One-loop propagator

relation with \mathbb{R}^2_{θ} , Q.M: focus at north pole $p \in S^2$

rescale $R \to \infty$ s.t. $\theta = \frac{2R^2}{N} = const$

$$[X^i, X^j] = i\theta\epsilon^{ij} + \mathcal{O}(\frac{1}{N})$$

coherent state at "origin" = north pole:

 $|0\rangle \equiv |p\rangle,$ $a|0\rangle \sim (X_1 + iX_2)|0\rangle = 0$ highest weight state

shifted (rotated) coherent states:

 $|x\rangle = U_x|0\rangle$ where $U_x = \exp(i\phi_i J^i), \quad x^i = R \epsilon^{ij}\phi_j$

localization:

$$\langle \mathbf{x}' | \mathbf{x} \rangle = \mathbf{e}^{-\frac{i}{2\theta}\mathbf{x}^i \varepsilon_{ij} \mathbf{x}'^j} \mathbf{e}^{-\frac{|\mathbf{x}-\mathbf{x}'|^2}{4\theta}}$$

covers area $A_N = \theta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

operators and symbols

For an operator $\mathcal{O} \in End(\mathcal{H})$, define symbol of \mathcal{O} as

 $\mathcal{O}(\mathbf{x}) = \langle \mathbf{x} | \mathcal{O} | \mathbf{x} \rangle$

... de-quantization of O, "semi-classical limit"

conversely:

$$\mathcal{O} = c_N \int_{S^2} dx \tilde{O}(x) |x\rangle \langle x|$$

in particular

$$\hat{Y}_m^l = c_N \int_{S^2} dx Y_m^l(x) |x\rangle \langle x|$$

however very delicate for large momenta, misleading in UV

wavefunctions and UV / IR sectors

IR ("semi-classical") sector:

non-local matrix elements decay at distances $|x - y| \sim L_{NC}$

$$\langle x|\mathcal{O}|y\rangle \approx \langle x|\mathcal{O}|x\rangle \langle x|y\rangle \approx \frac{1}{c_N} \langle x|\mathcal{O}|x\rangle \,\tilde{\delta}_N(x,y)$$

i.e. $\mathcal{O}(x)$ varies slowly on uncertainty scale $\delta = L_{NC}$

max. angular momentum $l \leq \sqrt{N}$, uncertainty $\Delta^2 = L_{AIC}^2$

optimally localized semi-classical function $|\boldsymbol{p}\rangle\langle\boldsymbol{p}| =: \frac{1}{C_N} \delta_N(\boldsymbol{X};\boldsymbol{p})$

< ロ > < 同 > < 回 > < 回 > .

UV sector:

most $\mathcal{O} \in End(\mathcal{H})$ have $l > \sqrt{N}$, not in semi-classical sector.

best described by non-local string states

$$\psi_{\mathbf{x},\mathbf{y}} := |\mathbf{x}\rangle\langle \mathbf{y}| \qquad \in End(\mathcal{H})$$

most extreme "function" on S_N^2 :

 $Y_{N-1}^{N-1} = |\mathbf{p}\rangle\langle -\mathbf{p}|,$

has $I_{UV} = N$, maximally de-localized

most NC "functions" are non-local \Rightarrow non-local contributions in loops!

Quasi-coherent states

analogous (quasi-) coherent states exist on generic fuzzy spaces \mathcal{M}_N

L. Schneiderbauer HS arXiv:1601.08007; cf. Ishiki arXiv:1503.01230

Add a "point probe" brane p_x at $x \in \mathbb{R}^D$,

matrix Laplacian for background $\mathcal{M}_N \cup p_x$ with point brane:

$$\mathfrak{X}^{a} = \begin{pmatrix} X^{a} & 0 \\ 0 & x^{a} \end{pmatrix} \in End(\mathcal{H} \oplus \mathbb{C}), \quad a = 1, \dots, D$$

string sector = off-diagonal "functions" $\Phi \in End(\mathcal{H} \oplus \mathbb{C})$ connecting \mathcal{M}_N with p_x , of the form

$$\Phi = \begin{pmatrix} 0 & \cdots & 0 & \\ \vdots & \ddots & \vdots & |\phi\rangle \\ 0 & \cdots & 0 & \\ & \langle \phi | & & 0 \end{pmatrix} \quad \in \mathcal{H} \oplus \mathcal{H}^{\mathsf{T}}$$

where $|\phi\rangle \in \mathcal{H}$.

Consider energy (=Laplacian) of these string states:

$$\Box_{\mathfrak{X}} \Phi = \sum_{a} [\mathfrak{X}^{a}, [\mathfrak{X}^{a}, \Phi]] = \sum_{a} (\mathfrak{X}^{a} \mathfrak{X}^{a} \Phi + \Phi \mathfrak{X}^{a} \mathfrak{X}^{a} - 2\mathfrak{X}^{a} \Phi \mathfrak{X}^{a})$$
$$= \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \sum_{a} (\mathcal{X}^{a} - x^{a})^{2} |\phi\rangle \\ 0 & \cdots & 0 & a \\ \langle \phi | \sum_{a} (\mathcal{X}^{a} - x^{a})^{2} & 0 \end{pmatrix}$$

... shifted harmonic oscillator for $|\phi\rangle$ on \mathcal{M} (recall: \mathcal{M}_N has structure of phase space in QM, cf. $P^2 + Q^2 \equiv \sum X_i^2$... harmonic oscillator at origin)

$$\mathfrak{X}^{a} = \begin{pmatrix} X^{a} & 0 \\ 0 & x^{a} \end{pmatrix}, \qquad a = 1, \dots, d$$

tes coherent states on S_N^2

string states

Laplacian for string sector reduces to

$$\Box_x = \sum_{a=1}^d \left(X^a - x^a \right)^2$$

consider quadratic form

$$\begin{split} \frac{1}{2} \mathrm{tr}(\Phi^{\dagger} \Box_{\mathfrak{X}} \Phi) &= \langle \phi | \Box_{X} | \phi \rangle &= \sum_{a} (\Delta_{\phi} X^{a})^{2} + \sum_{a} (\langle \phi | X^{a} | \phi \rangle - x^{a})^{2} \\ &= \delta^{2}(\phi) + |\vec{\mathbf{x}}(\phi) - \vec{x}|^{2} \\ &=: E(\vec{x}) \end{split}$$

Exercise 10 : Check this ! Here

 $\vec{\mathbf{x}}(\phi) = \langle \phi | \vec{X} | \phi \rangle$

and

$$\delta^{2}(\phi) = \sum_{a} \langle \phi | (X^{a})^{2} | \phi \rangle - \langle \phi | X^{a} | \phi \rangle^{2} = \sum_{a} \langle \phi | (X^{a} - \mathbf{x}^{a}(\phi))^{2} | \phi \rangle$$

is the dispersion of the state ϕ .

H. Steinacker

Lecture III: Coherent states, loops and effective actions in NC field theory

Quasi-coherent states

Let \vec{x} be a point in target space \mathbb{R}^{D} . Then the *quasi-coherent state(s)* at \vec{x} are defined to be the ground state(s) Ψ of \Box_{x} , and their eigenvalue

 $\Box_x \Psi = E(\vec{x}) \Psi$

is the displacement energy.

Quasi-coherent states minimize

 $\delta^2(\phi) + |\vec{\mathbf{x}}(\phi) - \vec{x}|^2 = E(\vec{x})$ = Dispersion + displacement²

Perelomov coherent states are quasi-coherent states.

denote set of quasi-coherent states by S_E (possibly with cutoff prescription, e.g. upper bound on E) Then

 $\mathcal{M} := \vec{\mathbf{x}}(\mathcal{S}_{E}) := \{ \langle \psi | X^{a} | \psi \rangle; \quad \psi \in \mathcal{S}_{E} \} \quad \subset \mathbb{R}^{D}$

provides a semi-classical picture of the (generic) fuzzy space.

example: fuzzy shere S_N^2

can show:

The quasi-coherent state at $\vec{x} \in \mathbb{R}^3$ coincides with the Perelomov coherent state on S_N^2 which is closest to $\vec{x} \in \mathbb{R}^3$.

and

$$\mathcal{M} = \vec{\mathbf{x}}(\mathcal{S}_E) = S^2$$

< 🗇 🕨 < 🖻 🕨

Measuring finite Quantum Geometries via Quasi-Coherent States

Compute E(x) for all $x \in \mathbb{R}^{D}$.

For $x \in \mathcal{M}$, expect Hessian $H_{\mu\nu} = \nabla_{\mu}\nabla_{\nu}E$ to have $2n = \dim \mathcal{M}$ small eigenvalues, clearly separated from the remaining higher EV's (which measure the transversal separation).

The corresponding 2n eigenvectors of $H_{\mu\nu}$ define the tanget space of \mathcal{M} at *x*.

Can **measure** the location of the brane $\mathcal{M} \subset \mathbb{R}^{D}$ by scanning target space \mathbb{R}^{D} and looking for ("quasi-") minima of $E(\vec{x})$, by following these tangential directions, possibly with cutoff

Mathematica package BProbe,

https://github.com/lschneiderbauer/BProbe/tree/v0.9.0

states coher

coherent states on S_N^2

string states

One-loop propagator

string states

Iso Kawai Kitazawa hep-th/0001027; H.S., arXiv:1606.00646

momentum operators

 $\mathcal{P}^{a}\mathcal{O} := [X^{a},\mathcal{O}],$ $\Box \mathcal{O} := \mathcal{P}^{a}\mathcal{P}_{a}\mathcal{O}$

expectation values

$$\begin{pmatrix} x \\ y \end{pmatrix} \mathcal{P}^{a} \begin{vmatrix} x \\ y \end{pmatrix} = \operatorname{tr} \psi_{y,x}[X^{a}, \psi_{x,y}] = \vec{\mathbf{x}}(x) - \vec{\mathbf{x}}(y)$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \mathcal{P}^{a} \mathcal{P}_{a} \begin{vmatrix} x \\ y \end{pmatrix} = \operatorname{tr} \psi_{y,x}[X^{a}, [X_{a}, .]] \psi_{x,y} = E_{xy}$$

 $E_{xy} = (\vec{\mathbf{x}}(x) - \vec{\mathbf{x}}(y))^2 + 2\Delta^2$

energy of string state = length 2 + zero point energy

Lecture III: Coherent states, loops and effective actions in NC field theory

general matrix elements

$$\begin{array}{lll} \begin{pmatrix} x \\ y \end{pmatrix} \mathcal{P}^{a} \mathcal{P}_{a} \begin{vmatrix} x' \\ y' \end{pmatrix} &= \langle x | X^{a} X^{a} | x' \rangle \langle y' | y \rangle + \langle x | x' \rangle \langle y' | X^{a} X^{a} | y \rangle - 2 \langle x | X^{a} | x' \rangle \langle y' | X_{a} | y \rangle \\ &\approx (2\Delta^{2} + \vec{x}^{2} + \vec{y}^{2} - 2\vec{x}\vec{y})) \langle x | x' \rangle \langle y' | y \rangle \\ &\approx E_{xy} \langle x | x' \rangle \langle y' | y \rangle \end{array}$$

nearly diagonal

good localization properties in both position and momentum !!

Lecture III: Coherent states, loops and effective actions in NC field theory

< 🗇 > < 🖻 > <

propagator

claim:

$$(\Box + \mu^2)^{-1} := c_N^2 \int_{\mathcal{M}} dx dy \left|_y^x\right) \frac{1}{E_{xy} + \mu^2} \left(_y^x\right) \approx (\Box + \mu^2)^{-1}$$

is excellent approximation to the propagator because:

completely regular since $E_{xy} \ge \Delta^2$

< 🗇 > < 🖻 > <

trace formula for $End(\mathcal{H})$

$$\mathrm{Tr}_{End(\mathcal{H})}\mathcal{O} = \frac{(\dim \mathcal{H})^2}{(\mathrm{Vol}\mathcal{M})^2} \int_{\mathcal{M} \times \mathcal{M}} dx dy \begin{pmatrix} x \\ y \end{pmatrix} \mathcal{O} \begin{pmatrix} x \\ y \end{pmatrix}$$

proof:

rhs = unique functional on $End(End(\mathcal{H}))$ invariant under $G_L \times G_R$ = Tr

< 🗇 > < 🖻 > <

example:

$$Tr_{End(\mathcal{H})}[X^{a}, [X_{a}, .]] = \frac{N^{2}}{(\text{Vol}S^{2})^{2}} \int_{S^{2} \times S^{2}} dx dx' tr(|x\rangle \langle x'|) (|x'^{a} - x^{a}|^{2} + 2\Delta^{2}) (|x'\rangle \langle x|)$$

$$= \frac{N^{2}}{(\text{Vol}S^{2})^{2}} \int_{S^{2} \times S^{2}} dx dx' (|x'^{a} - x^{a}|^{2} + 2\Delta^{2})$$

$$= \frac{N^{2}}{(\text{Vol}S^{2})} \int_{S^{2}} dx (|x^{a}(e) - x^{a}(x)|^{2} + 2\Delta^{2})$$

$$\approx \frac{1}{4} \frac{N^{2} (N^{2} - 1)}{4\pi^{2}} \int_{S^{2}} dx (|e_{3} - x|^{2} + O(\frac{1}{N}))$$

$$= \frac{1}{2} N^{2} (N - 1)^{2} (1 + O(\frac{1}{N}))$$

using $r_N^2 = x^a x_a = \frac{1}{4}(N-1)^2$ and $\Delta^2 \approx \frac{N}{2}$

good agreement with exact result:

$$\mathrm{Tr}_{End(\mathcal{H})}[X^{a}, [X_{a}, .]] = \sum_{j=0}^{N-1} j(j+1)(2j+1) = \frac{1}{2}N^{2}(N^{2}-1).$$

E 990

more generally:

for any smooth function f

$$\begin{aligned} \operatorname{Tr}_{End(\mathcal{H})} f(\Box) &= \frac{N^2}{(\operatorname{VolS}^2)^2} \int_{S^2} dx \int_{S^2} dy \, f(R_N^2 | x - y|^2 + 2\Delta^2) \\ &= \frac{N^2}{\operatorname{VolS}^2} \int_{S^2} dx f(r_N^2 | e_3 - x|^2 + 2\Delta^2) \\ &= 2\pi \frac{N^2}{\operatorname{VolS}^2} \int_0^\pi d\vartheta \sin \vartheta f(r_N^2 (1 - \cos \theta)^2 + \sin^2 \theta) + 2\Delta^2) \\ &= \frac{N^2}{2} \int_{-1}^1 du f(2r_N^2 (1 - u) + 2\Delta^2) \\ &\approx \int_0^N dj \, 2j f(j^2 + 2\Delta^2) \approx \sum_{j=0}^{N-1} (2j+1) f(j(j+1) + 2\Delta^2) \\ &= \operatorname{Tr}_{j_{\max}} f(\Box_g + 2\Delta^2) \\ &= \operatorname{Tr}_{j_{\max}} f(\Box_g) \end{aligned}$$

shift by $2\Delta^2 = N - 1$ negligible for $N \gg 1$ UV dominates! works because $\operatorname{spec}(\Box) = \operatorname{spec}(\Box_g)$ also in UV

One-loop propagator

one-loop propagator for ϕ^4 on S_N^2

$$S[\phi] = rac{1}{N} {
m tr} \Big(rac{1}{2} \phi (\Box + \mu^2) \phi + rac{g}{4!} \phi^4 \Big) \ = S_0[\phi] + S_{
m int}[\phi] \ .$$

1-loop effective action (= Gaussian approx.)

$$\begin{split} \Gamma_{\text{eff}}[\phi] &= S[\phi] + \frac{1}{2} \operatorname{Tr}_{\textit{End}(\mathcal{H})} \log \left(S''[\phi] \right) \\ (\psi, S''[\phi]\psi) &= \frac{1}{N} \operatorname{tr} \left(\psi(\Box + \mu^2)\psi + \frac{g}{3}\phi^2\psi^2 + \frac{g}{6}\psi\phi\psi\phi \right) \end{split}$$

expanded:

$$\begin{split} \Gamma_{1-loop}[\phi] &= & \operatorname{Tr}\log(.(\Box + \mu^2). + \frac{g}{3}.\phi^2. + \frac{g}{6}.\phi.\phi) \\ &= & \operatorname{Tr}\log(\Box + \mu^2) + \operatorname{Tr}\left(.\frac{1}{\Box + \mu^2}(\frac{g}{3}\phi^2. + \frac{g}{6}\phi.\phi)\right) + O(\phi^4) \end{split}$$

assume $\phi = \phi(X)$ slowly varying, IR regime

 $\Rightarrow \phi \psi_{yx} \approx \phi(y) \psi_{yx}$ in string basis

$$\begin{split} & \Gamma \mathbf{r}(.\phi^2.) \quad = \quad \frac{N^2}{Vol(\mathcal{M})^2} \int_{\mathcal{M} \times \mathcal{M}} d\mathbf{x} d\mathbf{y} \operatorname{tr}(\psi_{\mathbf{y},\mathbf{x}} \phi^2 \psi_{\mathbf{x},\mathbf{y}}) \\ & = \quad \frac{N^2}{Vol(\mathcal{M})} \int_{\mathcal{M}} d\mathbf{x} \langle \mathbf{x} | \phi^2 | \mathbf{x} \rangle \; . \end{split}$$

Similarly, "planar" contribution

$$Tr(.\Box^{-1}\phi^{2}.) = \frac{N^{2}}{Vol(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dxdy \operatorname{tr}(\psi_{y,x}(\Box + \mu^{2})^{-1}(\phi^{2}\psi_{x,y}))$$

$$\approx \frac{N^{2}}{Vol(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dxdy \frac{1}{r_{N}^{2}|x-y|^{2}+2\Delta^{2}+\mu^{2}} \operatorname{tr}(\psi_{y,x}\phi^{2}\psi_{x,y})$$

$$= \frac{N^{2}}{Vol(\mathcal{M})} \int_{\mathcal{M}} dxdy \frac{1}{r_{N}^{2}|x-y|^{2}+\mu^{2}} \langle x|\phi^{2}|x\rangle$$

$$= \frac{\mu_{N}^{2}}{Vol(\mathcal{M})} \int_{\mathcal{M}} dx \phi^{2}(x)$$

э.

assume $\phi = \phi(X)$ slowly varying, IR regime

 $\Rightarrow \phi \psi_{yx} \approx \phi(y) \psi_{yx}$ in string basis

$$\begin{split} &\Gammar(.\phi^2.) = \frac{N^2}{Vol(\mathcal{M})^2} \int_{\mathcal{M}\times\mathcal{M}} dx dy \operatorname{tr}(\psi_{y,x}\phi^2\psi_{x,y}) \\ &= \frac{N^2}{Vol(\mathcal{M})} \int_{\mathcal{M}} dx \langle x | \phi^2 | x \rangle \;. \end{split}$$

Similarly, "planar" contribution

$$Tr(\square^{-1}\phi^{2}.) = \frac{N^{2}}{Vol(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dxdy \operatorname{tr}(\psi_{y,x}(\square + \mu^{2})^{-1}(\phi^{2}\psi_{x,y}))$$

$$\approx \frac{N^{2}}{Vol(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dxdy \frac{1}{r_{N}^{2}|x-y|^{2}+2\Delta^{2}+\mu^{2}} \operatorname{tr}(\psi_{y,x}\phi^{2}\psi_{x,y})$$

$$= \frac{N^{2}}{Vol(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dxdy \frac{1}{r_{N}^{2}|x-y|^{2}+\mu^{2}} \langle x|\phi^{2}|x\rangle$$

$$= \frac{\mu_{N}^{2}}{Vol(\mathcal{M})} \int_{\mathcal{M}} dx \phi^{2}(x)$$

E 990

1-loop "planar" mass renormalization

$$\begin{split} \mu_N^2 &= \frac{N^2}{Vol(S^2)} \int_{S^2} dy \, \frac{1}{r_N^2 |e-y|^2 + \tilde{\mu}^2} \\ &= \frac{N^2}{2r_N^2} \int_0^{\pi} d\vartheta \sin \vartheta \frac{1}{(1 - \cos \vartheta)^2 + \sin \vartheta^2 + \frac{\tilde{\mu}^2}{r_N^2}} \\ &= 2 \int_{-1}^1 du \frac{1}{2 - 2u + \frac{\tilde{\mu}^2}{r_N^2}} \\ &\approx \sum_{j=0}^N \frac{2j + 1}{j(j+1) + \mu^2} \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回</p>

э

"nonplanar" contribution

$$\begin{aligned} \operatorname{Tr}(.(\Box + \mu^{2})^{-1}\phi.\phi) &= \frac{N^{2}}{\operatorname{Vol}(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dx dy \operatorname{tr}(\psi_{y,x}(\Box + \mu^{2})^{-1}(\phi\psi_{x,y}\phi)) \\ &= \frac{N^{2}}{\operatorname{Vol}(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dx dy \langle x | (\Box + \mu^{2})^{-1}\phi | x \rangle \langle y | \phi | y \rangle \\ &= \frac{N^{2}}{\operatorname{Vol}(\mathcal{M})^{2}} \int_{\mathcal{M}\times\mathcal{M}} dx dy \frac{1}{r_{N}^{2} | x - y |^{2} + \tilde{\mu}^{2}} \phi(x) \phi(y) \end{aligned}$$

Lecture III: Coherent states, loops and effective actions in NC field theory

(a)

æ

one-loop quantum effective action:

$$S_{1-loop} \sim S_0 + rac{g}{3} rac{1}{\operatorname{Vol}(\mathcal{M})} \int\limits_{\mathcal{M}} dx \mu_N^2 \phi(x)^2 + rac{g}{6} rac{N^2}{\operatorname{Vol}(\mathcal{M})^2 r_{\operatorname{N}}^2} \int\limits_{\mathcal{M} imes \mathcal{M}} dx dy rac{\phi(x)\phi(y)}{|x-y|^2 + rac{\mu^2}{r_N^2}} + O(\phi^4)$$

long-range non-localityfrom UV sector(UV/IR mixing)applies to any compact fuzzy spacecheck for S_N^2 : agrees with traditional mode expansion

$$S_{1-loop} = S_0 + \int rac{1}{2} \, \Phi(\mu_N^2 - rac{g}{12\pi} h(ilde{\square})) \Phi + o(1/N)$$

Chu Madore HS hep-th/0106205

where

$$h(L) = -\frac{1}{2} \int_{-1}^{1} dt \frac{1}{1-t} (P_L(t) - 1) = \sum_{k=1}^{L} \frac{1}{k}$$

less transparent, requires asymptotics of 6J symbols etc.

H. Steinacker

Lecture III: Coherent states, loops and effective actions in NC field theory

Moyal-Weyl plane limit \mathbb{R}^2_{θ} $R^2 = r^2 R_N^2 = \frac{N\theta}{4}$

where Vol $\mathcal{M} = 4\pi R^2 = \pi N\theta$ plane wave basis $\phi(x) = \int \frac{d^2k}{2\pi} \phi_k(e^{ixk} + e^{-ikx})$.

$$\begin{split} \Gamma_{NP} &\approx \quad \frac{g}{6\pi^2\theta^2} \int d^2 k \phi(k)^2 \int d^2 z \frac{1}{|z|_g^2 + \mu^2} e^{ik_j z^i} \\ &= \quad \frac{g}{6\pi^2\theta^2} \int d^2 k \phi(k)^2 \int d^2 p \frac{1}{p_i p_j G^{ij} + \mu^2} e^{ik_i \theta^{ij} p_j}. \end{split}$$

replacing $z^{i} = \theta^{ij} p_{j}$, and $G^{ij} = \theta^{ii'} \theta^{jj'} \delta_{i'j'}$

... familiar form in NCFT, IR divergence for $k \rightarrow 0$ from UV loop, UV/IR mixing

< 同 > < 三 > < 三 >

significance of UV/IR mixing:

UV sector in loops = virtual long strings $|x\rangle\langle y|$ lead to long-range non-locality in $\int_{\mathcal{M}\times\mathcal{M}} dx dy \frac{\phi(x)\phi(y)}{|x-y|^2+\mu^2}$

interpret NCFT as (non-critical) string theory! open strings beginning and ending on D-branes

universal, same on any fuzzy space \mathcal{M} , any dimension accumulates at higher loops, inacceptable as fundamental theory except in SUSY case: cancellations!

H. Steinacker

Lecture III: Coherent states, loops and effective actions in NC field theory

higher loops

t'Hooft double line formalism, ribbon graphs

lines labeled by positions x, preserved by propagators (!!)

much simpler than in ordinary QFT, directly in position space !

H.S., arXiv:1606.00646

・ 同 ト ・ ヨ ト ・ ヨ

(to be developed)

summary & outlook

- fuzzy spaces = noncommutative spaces embedded in ℝ^D realized by (finite-dim.) matrices X^a, a = 1,..., D
- can realize generic geometries
- physical models naturally formulated as matrix models
- coherent states $|x\rangle$, "string states" $|x\rangle\langle y|$ useful
- UV/IR mixing understood due to long strings mediating interactions
- supersymm. IKKT model \rightarrow mild non-locality (=IIB supergravity) 4D gravity should (?!!) emerge on suitable branes (S_N^4)

 \rightarrow candidate for theory of fundamental interactions including gravity