

1. Courant algebroid axioms

A Courant Algebroid consists of a vector bundle $E \to M$ with a bracket [.,.], a non-degenerate fiber-wise inner product $\langle ., . \rangle$ and a bundle map ("anchor") $\rho : E \to TM$ subject to the following three axioms

$$[e, [e', e'']] = [[e, e'], e''] + [e', [e, e'']] , \quad \rho(e) \langle e', e' \rangle = 2 \langle [e, e'], e' \rangle , \quad \rho(e) \langle e', e' \rangle = 2 \langle e, [e', e'] \rangle$$

for $e, e', e'' \in \Gamma E$.

- (a) The last axiom can be rewritten as $[e, e] = \frac{1}{2}\mathcal{D}\langle e, e\rangle$, where $D = \iota \circ \rho^T \circ d$ and $\iota : E^* \to E$ is the isomorphism induced by $\langle ., . \rangle$ and $\rho^T : T^*M \to E^*$ is the transpose of the anchor map.
- (b) Polarizing the last two axioms (i.e. substitute $e' = e_1 + e_2$) you can show $\rho(e)\langle e_1, e_2 \rangle = \langle [e, e_1], e_2 \rangle + \langle e_1, [e, e_2] \rangle = \langle e, [e_1, e_2] + [e_2, e_1] \rangle$.
- (c) Derive two further important properties from the axioms:

$$[e, f \cdot e'] = \rho(e)(f) \cdot e' + f \cdot [e, e'] , \quad \rho([e, e']) = [\rho(e), \rho(e')]_{\text{Lie}}$$

(Note that $\langle f \cdot e', e'' \rangle = f \cdot \langle e', e'' \rangle$ for $f \in C^{\infty}(M)$.)

(d) The bracket is neither antisymmetric, nor does it satisfy the Leibniz rule in the first slot. Show that instead: $[f \cdot e', e] = f \cdot [e', e] - \rho(e)f \cdot e' + \mathcal{D}\langle f \cdot e', e \rangle$.

2. Metric-twisted Dorfman bracket

It is a standard result that the Dorfman bracket

$$[Y + \eta, Z + \zeta] = \mathcal{L}_Y(Z + \zeta) - i_Z d\eta \quad \text{with } Y, Z \in \Gamma(TM) \text{ and } \eta, \zeta \in \Gamma(T^*M)$$

can be twisted by the *B*-field leading to a bracket with an extra term involving the 3-form flux *H*. (You are welcome to review this construction as an exercise.) Instead of using the antisymmetric *B*, the Dorfman bracket can also be twisted by the symmetric metric *g* (or even more generally by $\mathcal{G} = g + B$). In order to preserve the Courant algebroid axioms, the pairing must also be modified. The metric-twisted bracket and pairing are

$$[Y+\eta, Z+\zeta]_g = e^{-g}([e^gY+\eta, e^gZ+\zeta]) \text{ and } \langle Y+\eta, Z+\zeta\rangle_g = i_Y\zeta + i_Z\eta + 2g(Y,Z) + i_Z\eta + i_Z\eta + i_Z\eta + i_Z\eta + 2g(Y,Z) + i_Z\eta + i_Z\eta + 2g(Y,Z) + i_Z\eta +$$

where $e^{g}Y \equiv Y + g(Y, .)$ and the metric g maps the vector field Y to the 1-form g(Y, .).

(a) Compute $2g(\nabla_X Y, Z) := \langle X, [Y, Z]_g \rangle_g - \langle X, [Y, Z]_{\text{Lie}} \rangle_g$ to obtain a Koszul formula for the connection. (Unlike the original Koszul formula, your result will also hold for a non-symmetric metric $\mathcal{G} = g + B$. See arXiv:1512.00207 [hep-th] for the result.)

This is in fact an exercise in standard differential geometry (no fancy math needed). To proceed, first derive (or convince yourself) that $\mathcal{L}_X g(Y,.) = X.g(Y,.) - g(Y,[X,.])$. Using the Cartan identity $\mathcal{L}_X = i_X d + di_X$ this then also gives $i_X dg(Y,.) = X.g(Y,.) - g(Y,[X,.]) - dg(Y,X)$.

- (b) Verify that metricity of the connection is ensured by the third Courant algebroid axiom: Show $X.g(Y,Z) = g(\nabla_X Y,Z) + g(Y,\nabla_X Z)$ using the result of 1(b) (previous exercise).
- (c) A more challenging exercise: Show that ∇_X defined in 2(a) is indeed an affine connection. *Hint: Use the result of part 1(d) to show* $\nabla_X fY = X(f) \cdot Y + f \cdot \nabla_X Y$. Think about possible generalizations of the construction for arbitrary Courant algebroids (using the anchor map).