Lecture series on 3d gravity

Lecture 1:
Geometry of Classical 3d Gravity

Quantum Structure of
Spacetime and Gravity 2016

August 21-28 2016
Belgrade, Serbia

Catherine Meusburger
Department Mathematik, Universitat Erlangen-Nurnberg

cocosE

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY




Why 3d gravity?

* toy model for quantum gravity in higher dimensions

* non-commutative structures and mathematical structures of NC geometry:
Hopf algebras, (co)module algebras, twists,...

* relates them to classical geometry: Lorentz and hyperbolic geometry, Teichmuller theory,...

e Lecture 1: Geometry of classical 3d gravity
e Construction of spacetimes
* Classification results
e Relation to Teichmuller and hyperbolic geometry

* Lecture 2: Phase space and symplectic structure
* Phase space of 3d gravity
e Symplectic structure in terms of Poisson-Lie groups

* Phase space as cotangent bundle of Teichmuller space

e Lecture 3: Quantisation

* Quantum 3d gravity as a Hopf algebra gauge theory
e Construction of the quantum theory

* Relation to models from condensed matter physics



1. Gravity in 3 dimensions

Einstein equations Ric,, — %QWR + Ag, = —81G1T,,

e in 3d: Ricci curvature Ric,, => Riemann curvature R, -

* no local gravitational degrees of freedom

» spacetimes locally isometric to model spacetimes X

* global degrees of freedom from matter (point particles) and topology

e vacuum solutions (7},, = 0) = constant curvature A = Einstein spacetimes

* constructed as quotients of model spacetimes

model spacetimes

Lorentzian
PSL(2,R) C G
Xp = Gp/PSL(2,R)

Euclidean
SU(2) C Gy
XA = GA/SU(2)

A

v
A

<€

spacetime X\

isometry group Ga

A>0 dSs PSL(2,C)

A= Y Iso(2,1) =2 PSL(2,R) x R?
A<O AdSs PSL(2,R) x PSL(2,R)
A>0 S SU(2) x SU(2)
A=0 Es Iso(3) =2 SU(2) x R?

A <0 H? PSL(2,C)

(—1,1,1)

(1,1,1)



2. Unified description of model spacetimes

isometry groups of Lorentzian model spacetimes

» commutative real algebra Ry = (R%,+,4): notation: (a,b) = a + (b with ¢/ = —A
(a,b) ‘A (¢,d) = (ac — Abd, ad + bc) a = Reg(a + £b)
b = Imy(a + £b)
a+¢b=a—tb
e analytic continuation analytic function f : R — R = analytic function f: Rxn — Ra
f(x) +Lf (2)y A=0 OReef  Olmyf
fle+ty) =130+ 0f@+y)+30-0f@—y) A=-1 > 0¥ %
f(a: + iy) A =1 aReef _ _A({ngf
‘ oy Ox
e isometry groups of model spacetimes (Tso(2. 1) A —
Gpr ={M € Mat(2, Rp) : det(M) =1} = < SL(2,R) x SL(2,R) A <0
SL(2,C) A>0

e Lie algebras of isometry groups ’150(2, 1) A =

gr = {M € Mat(2,Rp) : tr(M) =0} =< sl(2,R) D sl(2,R) A <0
sl(2,C A>0

N—



Lorentzian model spacetimes: M3, dS3, AdS;

b d —b
e involution o:Mat(2, Ry) — Mat(2, Ry) (a d> —> ( _ a)

C —C

* model spacetimes X\ = {M € Mat(2,Ry) : M® = M,det(M) =1} for A€ {0,£1}

action of isometry group >:GAX XAy —=>Xn G M=G-M-G°
e metric (M, M) = —det(Imy(M) + £ Rey(M))

e geodesics g(t) = Mexp(t{X) for M € X, X €5sl(2,R)

e standard future lightcone L = {exp(/X) : X € s[(2,R), tr(X?) < 0}

 foliation of lightcone by 2d hyperbolic space

HARXH o Xo H(t2) — en(t) (1 o>+zSA<t> (—Re(z) Rif))

0 1 Im(z) —1
( A L ( A —
(t)—it%Ak—<1 t A:Ol (t)—it%HAk—<t' t A:Ol
All) =2y = esl)  A=- sall) =2 mrgn - o0 A=-
k=0 Lcosh(t) A=1 k=0  sinh(z) A=1

=> compatible with SL(2,R) -action: H(g> z,t) =g- H(z,t) - ¢°

action on upper half-plane by Mobius transformations



3. Construction and classification of spacetimes

maximal globally hyperbolic Lorentzian spacetimes M with compact Cauchy surface S
=> M homeomorphicto R x §

=> universal cover M c X, globally hyperbolic
> M = M/n(S), m(S) ~ M via group homomorphism p : 71(S) = Ga

_ 3
e Ex: torus universe forA=0 m(S)=Z xZ pla) =e €R

spacelike translation

) € R p(b) = u € SO(2,1)
spacellke translations Lorentz boost
stabilising €1
M = I, (Rey)
future of a line

e Cauchy surface of genus g>1, general A [Mess, Benedetti, Bonsante]

e )M is convex, open, future complete region in X , future of a spacelike graph
e initial singularity M
* cosmological time function

t: M — R t(p) =sup{l(c) : c past directed causal curve with c¢(0) = p}

« foliation by surfaces of constant cosmological time (cct) M =UrMpr My = t~1(T)
o 771(5) mMT and M = UTMT/T('l(S)



conformally static spacetimes of genus g>1
7T1(S) — <CL1, b1, ..., Gg, bg ’ [agv bg] T [alvbl] — 1>

e group homomorphism p: m1(S) = PSL(2,R)

e universal cover M = L - interior of standard lightcone

Y

e cct surfaces My = H(H?,T)

e action of 71(5)

:SA

(T)H? - rescaled copies of H?
= action of Fuchsian group I" € PSL(2,R) on H?

=) tesselation of H” by geodesic arc 4g-gons

for all values of A:

=>PSL(2,R) covariant; M — g- M - ¢° correspondsto P =g P9
gy = —dT? + SA(T)29H2/F

e spacetime M = UrpMryp/m1(S) = Ur sy (T)H?/T

conformally static

{conformally static MGH spacetimes of genus g > 1}/Diffy(M)
= T(S) Teichmiller space

= {Fuchsian groups I' C PSL(2,R) of genus g > 1}/PSL(2,R)

e cosmological time ¢: M — R - geodesic distance from tip of lightcone
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geometry change via earthquake and grafting

ingredients
o hyperbolic surface ¥ = H?/I" « cocompact Fuchsian group I" C PSL(2,R)
& conformally static spacetime

e weighted multicurve {(c;, w;) }ier finite set of closed, non-intersecting geodesics c;on X

with weights w; > 0
construction

e lift geodesics to H? and embed into foliated lightcone
e select basepoint

e cut lightcone along geodesics

earthquake grafting
e for each geodesic ¢;: e for each geodesic ¢;:
apply exp(w; X.,) € PSL(2,R) to the right apply exp(fw; X.,) € G to the right
Lorentz boost, hyperbolic distance w; ~ imaginary earthquake

translation, distance w;
X, €51(2,R)

2 1 \ . .
tr(XCi) — 2 “\\\\ o =
moves to the left
\-.?-."\‘,?‘.'- q+Wn p i q+Wn




earthquake grafting

* universal cover e remains standard lightcone e deformed lightcone
e future of a point e future of a graph
e cosmological time e geodesic distance from tip e geodesic distance from graph
of lightcone
e ccT surfaces e rescaled copies of H? e deformed copies of H?
e action of m1(S5) e Via group homomorphism e via group homomorphism
p:m(S) — PSL(2,R) p:m(S) = Ga
* spacetime e remains conformally static e evolves with cosmological time
\%
(o)
\%
e

D =S



earthquake and grafting - transformation of holonomies

* group homomorphism po : m1(S) — PSL(2,R) <« Fuchsian group I'

e weighted multicurve {(ci,w;)}ier on ¥ = H*/T'

transformation of group homomorphism given by cocycles

= im(py) of genus g

earthquake grafting
A BU:HQXHQ%PSL(Q,R) BQT-H2><H2%GA
¢( By (p,q H exp(w; X By (p, q
(p,q)Ne;

X, €5l(2,R)

C2 Ci1 ©¢ P tr(X(i;) = %
> moves to the left

Cs

e PSL(2,R)- covariant B(gr>p,g>q)=g-B(p,q)-¢g° g€ PSL(2,R
e I'- invariant B(gr>p,g>q) = B(p,q) gel

transformation of holonomies p: 71 (S) — Ga
p(A) = po(A) - B(p, po(A) > p)

~ imaginary earthquake

exp(sX,,) € PSL(2,R) stabilises ¢;




classification results [Thurston, Mess, Barbot, Benedetti, Bonsante, Schlenker],...

e characterisation of MGH spacetimes by earthquake and grafting

=> consider generalisation of earthquake and grafting to measured geodesic laminations
(= limits of weighted multicurves with infinitely many geodesics)

Theorem: [Thurston, Mess,Bendetti-Bonsante, Schlenker]

S compact of genus g>1:
e every evolving spacetime is obtained from conformally static spacetime via grafting
along a measured geodesic lamination

* every conformally static spacetime is obtained from given conformally static spacetime
via earthquake along a measured geodesic lamination

e characterisation of MGH spacetimes by group homomorphisms

Theorem: [Mess,Bendetti-Bonsante]
S compact of genus g>1:

e group homomorphisms related by conjugation determine isometric spacetimes
e A <0: p:m(S) — G determines M up to diffeomorphisms

* A>0:p:m(S5) — G, determines M up to diffeomorphisms & up to discrete parameter

e similar results for Cauchy surfaces S with cusps or punctures (=> weaker)



physics: measuring the group homomorphisms

example: conformally static spacetime of genus g>1, A=0
determined by p : m1(S) — PSL(2,R)

observer m1(S) - equivalence class of timelike,
future directed geodesic in M

 returning light signal lightlike, future directed geodesic from
one observer geodesic g to an image p(\)g

* return time At = (g(t), p(MN)g(?))
g(t) =xt = (X, p(A)X) = cosh dy= (x, p(A)x)

* measurement of group homomorphism
* observer emits light in all directions

* measures return time and direction of signals
 draws geodesic segment through x and p(\)x
e constructs perpendicular bisector

=> observer reconstructs Dirichlet region
of p(m1(5)) C PSL(2,R)
and p: m1(S) — PSL(2,R)

up to conjugation in finite eigentime



classification in terms of moduli spaces

conclusion: M =R x S, S compact of genus g > 1

phase space contained in moduli space of flat
of 3d gravity G A -connections on S

M, (9) = {max. glob. hyperbolic Lorentzian Hom(71(S), Ga)/Ga
structures on M of curvature A} /Diffy(M)

similarly: S compact of genus g > 1
Y P 5 J moduli space of flat

Teichmiiller space contained in PSL(2,R)-connections on S

T (S) = {hyperbolic structures on S} /Diff((.5) Hom(7(S), PSL(2,R))/PSL(2, R)

* not coincidental:
=> spacetimes obtained by grafting along measured geodesic laminations

=» measured geodesic laminations form fibre bundle MZL(S) over Teichmdiller space T (.5)
Mp(S)ZML(S)=ZT*T(S)
=> description of phase space M (S) in terms of structures from Teichmduller theory

=> for surfaces with cusps: simple description in terms of shear coordinates



4. 3d spacetimes from Teichmuller space

S oriented surface of genus g with s>0 punctures (cusps), 2g-2+s>0

 Teichmuller space

finite area hyperbolic metrics on S with cusps at punctures

e parametrisation by shear coordinates:
* ideal triangulation of S: edges geodesic segments, all vertices at cusps
=> dual graph I'" = trivalent graph
=> triangulation lifts to geodesic triangulation of H?, vertices at 9H?
= assignment of ideal square to edge ¢ € £
(t—0) (=1 —o00)
(=1-=0) - (t — o0
cross ratio of ideal square

e shear coordinate fore € E : x.(h) =logt = log

]
|
T

e geometrical interpretation:
 reference edge (0,00) , reference triangles (—1,0,00), (0,1, o)

- triangle (0,%,00) from (0,1, 00) via earthquake along (0, c0)
with weight z.(h) = logt

—1!

x/2 0
€ T
E(x):< 0 e_x/2>:zHe 2




shear coordinates and holonomies

Aemi(S) = edge sequence A= (a1,...,05) inT
=> sequence of left /right turns at vertices of I

e holonomies
A= p(A) = PIE(x*)PY (E(x%1)--- PPE(x*') € PSL(2,R)

a 11 a 1 0
o= () 1) emone(10)

length of associated geodesic on S : tr(p(A)) = 2cosh(l(N)/2)

e faces of I' @ consistency conditions
closed paths that turn right at each vertex and traverse edges at most once in each direction
2> tr(p(f)) =2cosh(c!) with ¢/ =) 6/z* 6 € {1,2} - multiplicity of o in f

aEf

!
faces ~ loops around cusps = holonomies must be parabolic tr(p(f)) 2 & =0

> momentmap c=(c',....c"") : R¥Y - RF

Theorem: [Fock-Checkov, Penner]

Teichmuller space
T(S) = Hyp(S)/Diffy(S) = Homp (71 (S), PSL(2,R))/PSL(2,R) = ker(c)




moduli spaces of 3d gravity by analytic continuation of shear coordinates

e trivalent graph I' dual to ideal triangulation

e analytic continuation of shear coordinates
assign to edge e € E shear coordinate z° = x° 4+ fy° € Rx

=> consider Ry = (! + ty', ..., 2% + ty*™)

e faces of I' = moment maps
1 F E F
CAN — (CA7 "’7CA) . RA — RA

ch(@t + oyt . 2P+ yF) = Z 0f (z® + ¢y™) 0. € {1,2} - multiplicity of «in f
a€ef

Theorem [Scarinci, C.M.]

 moduli spaces of 3d gravity M (S) = ker(cy) C RY

* group homomorphisms p : m1(S) — Ga

for closed path A = (a1, ...,ay) in T
PO = PR PEGE) with P =L=( o 1 ) or pE=nr=( ] |)

eé(x—l—ﬁy) 0 ((E(x%yel) A=
E(x 4 ty) = Ly | T EEtY) El@-y) A=-1
0 ¢ 2 | E(r +1iy) A=1




5. The action of the mapping class group

mapping class group of oriented surface S
Mod(S) = Diff*(.9) /Diffo(S) = Out(m1(S)) = Aut(m1(S))/Inn(m(S))

e action on Hom(m(S),G)/G = essential in quantisation

¢ € Aut(m(S)): p:m(S) =G — p<dp=pod:m(S)—>G

e simple description of in terms of triangulations

Mod(S) acts by:
* finite sequences of Whitehead moves
° 7
B = /N
* modulo relations
(W*)? =id C 3
WeoWP =WPoWe for anp =10 p
Y

(aB) o W, = Wy
WeoWmToWSoW"oWS = (({n) pentagon




Mod(S) - action on Teichmuller space

= Hyp(.5)/Diffo(5)
Hyp(S)/Diff ™ (S) = T(S)/Mod(5)

relation to Riemann moduli space Riem(S)

transformation of shear coordinates under Whitehead move

T +— —X o
Weq @ < 150 |—>:135’5—|—10g(1—|—ef‘3a) . .
3 5 g’

Theorem: [Fock-Checkov, Penner] r

e transformation of shear coordinates defines Mod(S) - action on R”
e preserves the constraints ¢ = ¢’ o W,, and induces a Mod(S) -action on T (S) = ker(c) C R”

Mod(S) - action on moduli spaces of 3d gravity

transformation of generalised shear coordinates under Whitehead move
(20 sy o
Q. B,0 8,0 2%
W 1<z = Z —|—10g(1—|—6 2 Ze:aje_l_gyeERA
27 27 —log(l+e7 %)

Theorem: [Scarinci, C.M ]

The Whitehead moves W< : RY — RY satisfy the pentagon relation, preserve the
constraints ca : RY — R% and induces an action of Mod(S) on Mx(S)




e unified description of Lorentzian model spacetimes and isometry groups
for different values of A

e unified description of MGH Lorentzian spacetimes as quotients of universal cover

e conformally static spacetimes:
via action of Fuchsian group I' C PSL(2,R) on lightcone

related by earthquakes

* evolving spacetimes:
from conformally static spacetimes via grafting

e diffeomorphism classes of MGH spacetimes
& conjugacy classes of group homomorphisms o : m1(S) — Ga

e phase space of 3d gravity contained in moduli space of flat G, -connections on S

M (S) = {max. glob. hyperbolic Lorentzian C Hom(m1(S),Gp)/Ga
structures on M of curvature A} /Diffy(M)

o relation to Teichmuller space: via analytic continuation of shear coordinates

o explicit description of mapping class group action on M, (5)



