Lecture series on 3d gravity

Lecture 1: Geometry of Classical 3d Gravity

Quantum Structure of Spacetime and Gravity 2016

August 21-28 2016 Belgrade, Serbia

Catherine Meusburger Department Mathematik, Universität Erlangen-Nürnberg

Why 3d gravity?

Motivation

- toy model for quantum gravity in higher dimensions
- non-commutative structures and mathematical structures of NC geometry: Hopf algebras, (co)module algebras, twists,...
- relates them to classical geometry: Lorentz and hyperbolic geometry, Teichmüller theory,...

Content

- Lecture 1: Geometry of classical 3d gravity
 - Construction of spacetimes
 - Classification results
 - Relation to Teichmüller and hyperbolic geometry

• Lecture 2: Phase space and symplectic structure

- Phase space of 3d gravity
- Symplectic structure in terms of Poisson-Lie groups
- Phase space as cotangent bundle of Teichmüller space

• Lecture 3: Quantisation

- Quantum 3d gravity as a Hopf algebra gauge theory
- Construction of the quantum theory
- Relation to models from condensed matter physics

1. Gravity in 3 dimensions

Einstein equations

$$\operatorname{Ric}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = -8\pi G T_{\mu\nu}$$

- in 3d: Ricci curvature $\operatorname{Ric}_{\mu\nu} \Rightarrow$ Riemann curvature $\operatorname{R}_{\mu\nu\rho\sigma}$
- no local gravitational degrees of freedom
- spacetimes locally isometric to model spacetimes X_{Λ}
- global degrees of freedom from matter (point particles) and topology
- vacuum solutions ($T_{\mu\nu} = 0$) \Rightarrow constant curvature $\Lambda \Rightarrow$ Einstein spacetimes
- constructed as quotients of model spacetimes

			spacetime X_{Λ}	isometry group G_{Λ}	
Lorentzian	↑	$\Lambda > 0$	dS_3	$\mathrm{PSL}(2,\mathbb{C})$	(111)
$\mathrm{PSL}(2,\mathbb{R})\subset G_{\Lambda}$		$\Lambda = 0$	M_3	$\operatorname{Iso}(2,1) \cong \operatorname{PSL}(2,\mathbb{R}) \ltimes \mathbb{R}^3$	(-1, 1, 1)
$X_{\Lambda} = G_{\Lambda} / \mathrm{PSL}(2, \mathbb{R})$	V	$\Lambda < 0$	AdS_3	$\mathrm{PSL}(2,\mathbb{R}) \times \mathrm{PSL}(2,\mathbb{R})$	
Euclidean $SU(2) \subset G_{\Lambda}$	Î	$\Lambda > 0$	S^3	$SU(2) \times SU(2)$	(1,1,1)
		$\Lambda = 0$	E ₃	$\operatorname{Iso}(3) \cong \operatorname{SU}(2) \ltimes \mathbb{R}^3$	
$X_{\Lambda} = G_{\Lambda} / \mathrm{SU}(2)$	\checkmark	$\Lambda < 0$	\mathbb{H}^3	$\mathrm{PSL}(2,\mathbb{C})$	

model spacetimes

2. Unified description of model spacetimes

isometry groups of Lorentzian model spacetimes

• commutative real algebra
$$R_{\Lambda} = (\mathbb{R}^2, +, \cdot_{\Lambda})$$
:
 $(a, b) \cdot_{\Lambda} (c, d) = (ac - \Lambda bd, ad + bc)$

notation:
$$(a, b) = a + \ell b$$
 with $\ell^2 = -\Lambda$
 $a = \operatorname{Re}_{\ell}(a + \ell b)$
 $b = \operatorname{Im}_{\ell}(a + \ell b)$
 $\overline{a + \ell b} = a - \ell b$

• analytic continuation analytic function $f : \mathbb{R} \to \mathbb{R} \Rightarrow$ analytic function $f : R_{\Lambda} \to R_{\Lambda}$

$$f(x + \ell y) = \begin{cases} f(x) + \ell f'(x)y & \Lambda = 0\\ \frac{1}{2}(1 + \ell)f(x + y) + \frac{1}{2}(1 - \ell)f(x - y) & \Lambda = -1\\ f(x + iy) & \Lambda = 1 \end{cases} \xrightarrow{\Lambda = 0} \frac{\partial \operatorname{Re}_{\ell} f}{\partial x} = \frac{\partial \operatorname{Im}_{\ell} f}{\partial y} \\ \frac{\partial \operatorname{Re}_{\ell} f}{\partial y} = -\Lambda \frac{\partial \operatorname{Im}_{\ell} f}{\partial x} \end{cases}$$

• isometry groups of model spacetimes $G_{\Lambda} = \{ M \in \operatorname{Mat}(2, R_{\Lambda}) : \det(M) = 1 \} = \begin{cases} \operatorname{Iso}(2, 1) & \Lambda = 0 \\ \operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R}) & \Lambda < 0 \\ \operatorname{SL}(2, \mathbb{C}) & \Lambda > 0 \end{cases}$

Lie algebras of isometry groups

$$\mathfrak{g}_{\Lambda} = \{ M \in \operatorname{Mat}(2, R_{\Lambda}) : \operatorname{tr}(M) = 0 \} = \begin{cases} \mathfrak{iso}(2, 1) & \Lambda = 0 \\ \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sl}(2, \mathbb{R}) & \Lambda < 0 \\ \mathfrak{sl}(2, \mathbb{C}) & \Lambda > 0 \end{cases}$$

Lorentzian model spacetimes: M₃, dS₃, AdS₃

involution
$$\circ : \operatorname{Mat}(2, R_{\Lambda}) \to \operatorname{Mat}(2, R_{\Lambda}) \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} \overline{d} & -\overline{b} \\ -\overline{c} & \overline{a} \end{pmatrix}$$

- model spacetimes $X_{\Lambda} = \{M \in \operatorname{Mat}(2, R_{\Lambda}) : M^{\circ} = M, \det(M) = 1\}$ for $\Lambda \in \{0, \pm 1\}$
- action of isometry group $ightarrow : G_{\Lambda} \times X_{\Lambda} \to X_{\Lambda} \qquad G \triangleright M = G \cdot M \cdot G^{\circ}$
- metric $\langle M, M \rangle = -\det(\operatorname{Im}_{\ell}(M) + \ell \operatorname{Re}_{\ell}(M))$
- geodesics $g(t) = M \exp(t\ell X)$ for $M \in X_{\Lambda}$, $X \in \mathfrak{sl}(2,\mathbb{R})$
- standard future lightcone $L = \{ \exp(\ell X) : X \in \mathfrak{sl}(2, \mathbb{R}), \operatorname{tr}(X^2) < 0 \}$
- foliation of lightcone by 2d hyperbolic space

$$H: \mathbb{R} \times \mathbb{H}^2 \to X_{\Lambda} \qquad H(t, z) = c_{\Lambda}(t) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\ell s_{\Lambda}(t)}{\operatorname{Im}(z)} \begin{pmatrix} -\operatorname{Re}(z) & |z|^2 \\ -1 & \operatorname{Re}(z) \end{pmatrix}$$

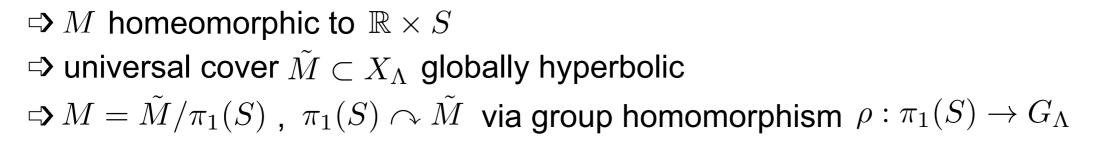
$$c_{\Lambda}(t) = \sum_{k=0}^{\infty} \frac{t^{2k} \Lambda^k}{(2k)!} = \begin{cases} 1 & \Lambda = 0\\ \cos(t) & \Lambda = -1\\ \cosh(t) & \Lambda = 1 \end{cases} \qquad s_{\Lambda}(t) = \sum_{k=0}^{\infty} \frac{t^{2k+1} \Lambda^k}{(2k+1)!} = \begin{cases} t & \Lambda = 0\\ \sin(t) & \Lambda = -1\\ \sinh(t) & \Lambda = 1 \end{cases}$$

 \Rightarrow compatible with $SL(2,\mathbb{R})$ -action: $H(g \triangleright z,t) = g \cdot H(z,t) \cdot g^{\circ}$

action on upper half-plane by Möbius transformations

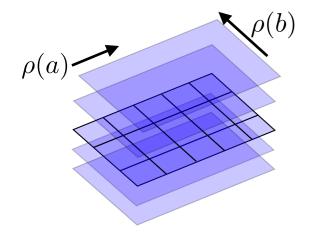
3. Construction and classification of spacetimes

maximal globally hyperbolic Lorentzian spacetimes M with compact Cauchy surface S



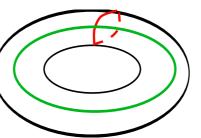
universal cover

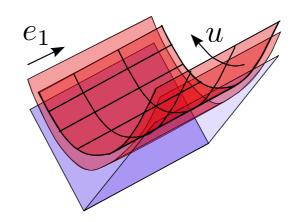
• Ex: torus universe for $\Lambda=0$ $\pi_1(S)=\mathbb{Z}\times\mathbb{Z}$



 $\rho(a),\rho(b)\in\mathbb{R}^3$ spacelike translations

$$\tilde{M} = M_3$$





 $\rho(a) = e_1 \in \mathbb{R}^3$ spacelike translation

 $\rho(b) = u \in SO(2, 1)$ Lorentz boost
stabilising e_1

 $\tilde{M} = I_+(\mathbb{R}e_1)$ future of a line

Cauchy surface of genus g>1, general Λ

[Mess, Benedetti, Bonsante]

- \tilde{M} is convex, open, future complete region in X_{Λ} , future of a spacelike graph
- initial singularity $\partial \tilde{M}$
- cosmological time function

 $t: \tilde{M} \to \mathbb{R}$ $t(p) = \sup\{l(c): c \text{ past directed causal curve with } c(0) = p\}$

- foliation by surfaces of constant cosmological time (cct) $\tilde{M} = \bigcup_T \tilde{M}_T \quad \tilde{M}_T = t^{-1}(T)$
- $\pi_1(S) \curvearrowright \tilde{M}_T$ and $M = \cup_T \tilde{M}_T / \pi_1(S)$

conformally static spacetimes of genus g>1

$$\pi_1(S) = \langle a_1, b_1, \dots, a_g, b_g | [a_g, b_g] \cdots [a_1, b_1] = 1 \rangle$$

- group homomorphism $\rho: \pi_1(S) \to \mathrm{PSL}(2,\mathbb{R})$
- universal cover $\tilde{M} = L$ interior of standard lightcone
- cosmological time $t: \tilde{M} \to \mathbb{R}$ geodesic distance from tip of lightcone
- cct surfaces $\tilde{M}_T = H(\mathbb{H}^2, T) \cong s_{\Lambda}(T) \mathbb{H}^2$ rescaled copies of \mathbb{H}^2

• action of $\pi_1(S)$

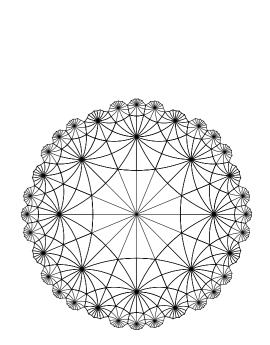
 \Rightarrow action of Fuchsian group $\Gamma \subset \mathrm{PSL}(2,\mathbb{R})$ on \mathbb{H}^2

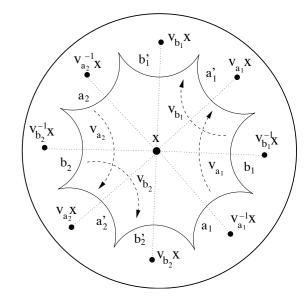
⇒ tesselation of \mathbb{H}^2 by geodesic arc 4g-gons ⇒ $\mathrm{PSL}(2,\mathbb{R})$ covariant: $\tilde{M} \to g \cdot \tilde{M} \cdot g^\circ$ corresponds to $\rho \to g \cdot \rho \cdot g^\circ$

• spacetime
$$M = \bigcup_T \tilde{M}_T / \pi_1(S) = \bigcup_T s_\Lambda(T) \mathbb{H}^2 / \Gamma$$
 conformally static
 $g_M = -dT^2 + s_\Lambda(T)^2 g_{\mathbb{H}^2 / \Gamma}$

for all values of Λ :

{conformally static MGH spacetimes of genus g > 1}/Diff₀(M) = {Fuchsian groups $\Gamma \subset PSL(2, \mathbb{R})$ of genus g > 1}/PSL($2, \mathbb{R}$) = $\mathcal{T}(S)$ Teichmüller space





geometry change via earthquake and grafting

ingredients

- hyperbolic surface $\Sigma = \mathbb{H}^2/\Gamma \iff$ cocompact Fuchsian group $\Gamma \subset PSL(2,\mathbb{R}) \iff$ conformally static spacetime
- weighted multicurve $\{(c_i, w_i)\}_{i \in I}$ finite set of closed, non-intersecting geodesics c_i on Σ

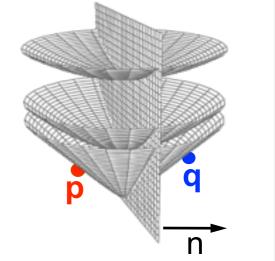
with weights $w_i > 0$

construction

- \bullet lift geodesics to $\ \mathbb{H}^2$ and embed into foliated lightcone
- select basepoint
- cut lightcone along geodesics

earthquake

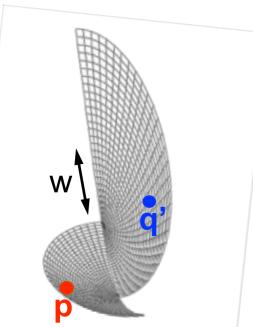
• for each geodesic c_i : apply $\exp(w_i X_{c_i}) \in PSL(2, \mathbb{R})$ to the right Lorentz boost, hyperbolic distance w_i

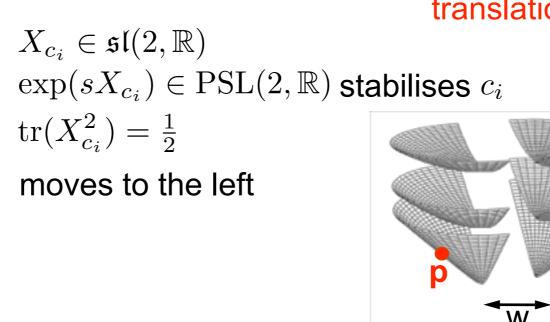


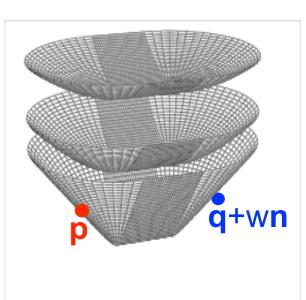
grafting

- for each geodesic c_i : apply $\exp(\ell w_i X_{c_i}) \in G_{\Lambda}$ to the right
- imaginary earthquake
 translation, distance w_i

q+wn







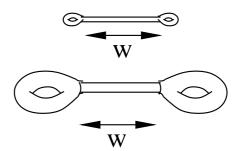
- universal cover
- cosmological time
- ccT surfaces
- action of $\pi_1(S)$
- spacetime

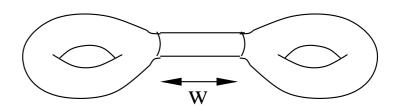
earthquake

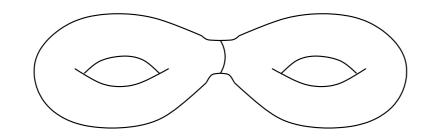
- remains standard lightcone
- future of a point
- geodesic distance from tip of lightcone
- rescaled copies of \mathbb{H}^2
- via group homomorphism $\rho: \pi_1(S) \to \mathrm{PSL}(2,\mathbb{R})$
- remains conformally static

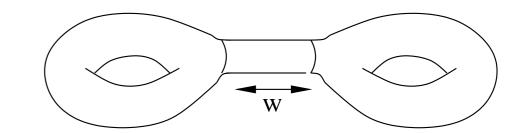
S

- deformed lightcone
- future of a graph
- geodesic distance from graph
- \bullet deformed copies of $\,\mathbb{H}^2$
- via group homomorphism $\rho:\pi_1(S)\to G_\Lambda$
- evolves with cosmological time





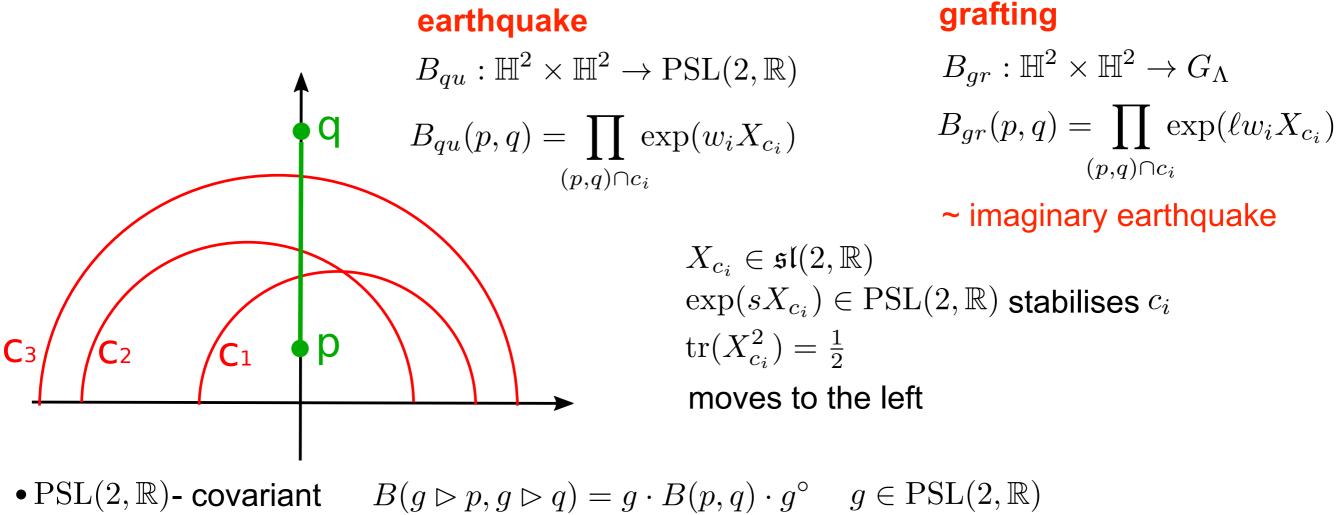




earthquake and grafting - transformation of holonomies

- group homomorphism $\rho_0: \pi_1(S) \to \mathrm{PSL}(2,\mathbb{R}) \Leftrightarrow \mathrm{Fuchsian} \text{ group } \Gamma = \mathrm{im}(\rho_0)$ of genus g
- weighted multicurve $\{(c_i, w_i)\}_{i \in I}$ on $\Sigma = \mathbb{H}^2 / \Gamma$

transformation of group homomorphism given by cocycles



• Γ - invariant

 $B(g \triangleright p, g \triangleright q) = g \quad D(p,q) \quad g \in \Gamma$ $B(g \triangleright p, g \triangleright q) = B(p,q) \qquad g \in \Gamma$

transformation of holonomies $\rho : \pi_1(S) \to G_\Lambda$ $\rho(\lambda) = \rho_0(\lambda) \cdot B(p, \rho_0(\lambda) \triangleright p)$

characterisation of MGH spacetimes by earthquake and grafting

consider generalisation of earthquake and grafting to measured geodesic laminations (= limits of weighted multicurves with infinitely many geodesics)

Theorem: [Thurston, Mess, Bendetti-Bonsante, Schlenker]

S compact of genus g>1:

- every evolving spacetime is obtained from conformally static spacetime via grafting along a measured geodesic lamination
- every conformally static spacetime is obtained from given conformally static spacetime via earthquake along a measured geodesic lamination

characterisation of MGH spacetimes by group homomorphisms

Theorem: [Mess,Bendetti-Bonsante]

S compact of genus g>1:

- group homomorphisms related by conjugation determine isometric spacetimes
- $\Lambda \leq 0$: $\rho : \pi_1(S) \to G_{\Lambda}$ determines M up to diffeomorphisms
- $\Lambda > 0$: $\rho : \pi_1(S) \to G_{\Lambda}$ determines M up to diffeomorphisms & up to discrete parameter
- similar results for Cauchy surfaces S with cusps or punctures (⇒ weaker)

physics: measuring the group homomorphisms

[C.M.]

g

 $v\mathbf{x}$

х

 \mathbb{H}^2

 $\rho(\tau)g$

 ${}^{\rho(\lambda)g}_{\prime}{}_{\rho(\mu)g}$

d = r

d = 2r

example: conformally static spacetime of genus g>1, Λ =0 determined by $\rho : \pi_1(S) \to PSL(2, \mathbb{R})$

• observer $\pi_1(S)$ - equivalence class of timelike, future directed geodesic in \tilde{M}

- returning light signal lightlike, future directed geodesic from one observer geodesic g to an image $\rho(\lambda)g$

- return time $\Delta t = \langle \dot{g}(t), \rho(\lambda) \dot{g}(t) \rangle$ $g(t) = \mathbf{x}t \qquad = \langle \mathbf{x}, \rho(\lambda) \mathbf{x} \rangle = \cosh d_{\mathbb{H}^2}(\mathbf{x}, \rho(\lambda) \mathbf{x})$
- measurement of group homomorphism
- observer emits light in all directions
- measures return time and direction of signals
- draws geodesic segment through ${\bf x}$ and $\,\rho(\lambda){\bf x}$
- constructs perpendicular bisector

⇒ observer reconstructs Dirichlet region of $\rho(\pi_1(S)) \subset PSL(2, \mathbb{R})$ and $\rho: \pi_1(S) \to PSL(2, \mathbb{R})$ up to conjugation in finite eigentime classification in terms of moduli spaces

conclusion: $M = \mathbb{R} \times S$, S compact of genus g > 1

phase space of 3d gravity

contained in

 $\mathcal{M}_{\Lambda}(S) = \{ \text{max. glob. hyperbolic Lorentzian} \\ \text{structures on } M \text{ of curvature } \Lambda \} / \text{Diff}_0(M)$

moduli space of flat G_{Λ} -connections on S

 $\operatorname{Hom}(\pi_1(S),G_\Lambda)/G_\Lambda$

similarly: S compact of genus g > 1

Teichmüller space

contained in

 $\mathcal{T}(S) = \{ \text{hyperbolic structures on } S \} / \text{Diff}_0(S)$

moduli space of flat $PSL(2, \mathbb{R})$ -connections on S $Hom(\pi_1(S), PSL(2, \mathbb{R}))/PSL(2, \mathbb{R})$

• not coincidental:

spacetimes obtained by grafting along measured geodesic laminations

⇒ measured geodesic laminations form fibre bundle $\mathcal{ML}(S)$ over Teichmüller space $\mathcal{T}(S)$ $\mathcal{M}_{\Lambda}(S) \cong \mathcal{ML}(S) \cong T^*\mathcal{T}(S)$

 \Rightarrow description of phase space $\mathcal{M}_{\Lambda}(S)$ in terms of structures from Teichmüller theory \Rightarrow for surfaces with cusps: simple description in terms of shear coordinates

4. 3d spacetimes from Teichmüller space

S oriented surface of genus g with s>0 punctures (cusps), 2g-2+s>0

Teichmüller space

 $\mathcal{T}(S) = \operatorname{Hyp}(S)/\operatorname{Diff}_0(S) = \operatorname{Hom}_F(\pi_1(S), \operatorname{PSL}(2, \mathbb{R}))/\operatorname{PSL}(2, \mathbb{R})$ finite area hyperbolic metrics on S with cusps at punctures

parametrisation by shear coordinates:

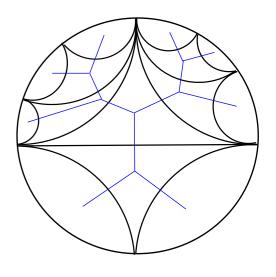
- ideal triangulation of S: edges geodesic segments, all vertices at cusps
 - \Rightarrow dual graph Γ = trivalent graph
 - \Rightarrow triangulation lifts to geodesic triangulation of \mathbb{H}^2 , vertices at $\partial \mathbb{H}^2$
 - \Rightarrow assignment of ideal square to edge $e \in E$

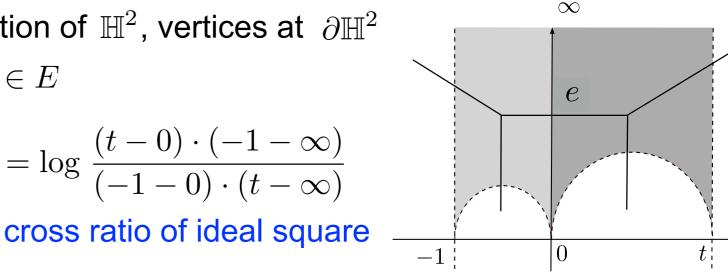
• shear coordinate for
$$e \in E$$
: $x_e(h) = \log t = \log \frac{(t-0) \cdot (-1-\infty)}{(-1-0) \cdot (t-\infty)}$

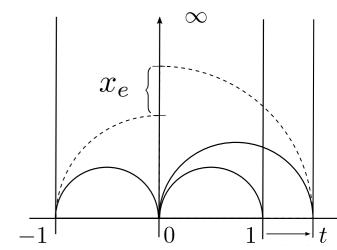
• geometrical interpretation:

- reference edge $(0,\infty)$, reference triangles $\ (-1,0,\infty)$, $(0,1,\infty)$
- triangle $(0, t, \infty)$ from $(0, 1, \infty)$ via earthquake along $(0, \infty)$ with weight $x_e(h) = \log t$

$$E(x) = \begin{pmatrix} e^{x/2} & 0\\ 0 & e^{-x/2} \end{pmatrix} : z \mapsto e^x z$$





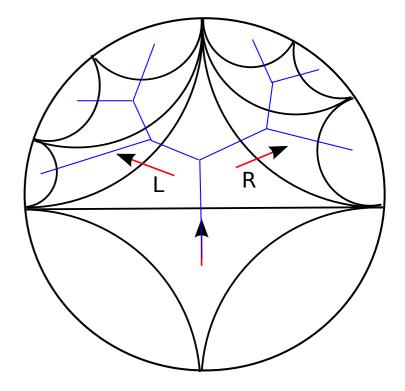


shear coordinates and holonomies

 $\lambda \in \pi_1(S) \Rightarrow$ edge sequence $\lambda = (\alpha_1, ..., \alpha_n)$ in Γ \Rightarrow sequence of left /right turns at vertices of Γ

holonomies

$$\lambda \mapsto \rho(\lambda) = P_n^a E(x^{\alpha_n}) P_{n-1}^a E(x^{\alpha_{n-1}}) \cdots P_1^a E(x^{\alpha_1}) \in \operatorname{PSL}(2, \mathbb{R})$$
$$P_k^a = L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{or} \quad P_k^a = R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$



length of associated geodesic on S : $\operatorname{tr}(\rho(\lambda)) = 2\cosh(l(\lambda)/2)$

• faces of $\Gamma \Rightarrow$ consistency conditions

closed paths that turn right at each vertex and traverse edges at most once in each direction

$$\Rightarrow \operatorname{tr}(\rho(f)) = 2\cosh(c^f) \text{ with } c^f = \sum_{\alpha \in f} \theta^f_{\alpha} x^{\alpha} \quad \theta^f_{\alpha} \in \{1, 2\} \text{ - multiplicity of } \alpha \text{ in } f$$

faces ~ loops around cusps \Rightarrow holonomies must be parabolic $tr(\rho(f)) \stackrel{!}{=} 2 \Leftrightarrow c^f \stackrel{!}{=} 0$

$$\Rightarrow$$
 moment map $c = (c^1, ..., c^F) : \mathbb{R}^E \to \mathbb{R}^F$

Theorem: [Fock-Checkov, Penner]

Teichmüller space $\mathcal{T}(S) = \mathrm{Hyp}(S)/\mathrm{Diff}_0(S) = \mathrm{Hom}_F(\pi_1(S), \mathrm{PSL}(2, \mathbb{R}))/\mathrm{PSL}(2, \mathbb{R}) \cong \ker(c)$ moduli spaces of 3d gravity by analytic continuation of shear coordinates

• trivalent graph Γ dual to ideal triangulation

analytic continuation of shear coordinates

assign to edge $e \in E$ shear coordinate $z^e = x^e + \ell y^e \in R_\Lambda$ \Rightarrow consider $R^E_\Lambda = (x^1 + \ell y^1, ..., x^E + \ell y^E)$

• faces of $\Gamma \Rightarrow$ moment maps

 $c_{\Lambda} = (c_{\Lambda}^{1}, ..., c_{\Lambda}^{F}) : R_{\Lambda}^{E} \to R_{\Lambda}^{F}$ $c_{\Lambda}^{f}(x^{1} + \ell y^{1}, ..., x^{E} + \ell y^{E}) = \sum_{\alpha \in f} \theta_{\alpha}^{f}(x^{\alpha} + \ell y^{\alpha}) \quad \theta_{\alpha}^{f} \in \{1, 2\} \text{-multiplicity of } \alpha \text{ in } f$

Theorem [Scarinci, C.M.]

- moduli spaces of 3d gravity $\mathcal{M}_{\Lambda}(S) \cong \ker(c_{\Lambda}) \subset R_{\Lambda}^{E}$
- group homomorphisms $\rho: \pi_1(S) \to G_\Lambda$

for closed path
$$\lambda = (\alpha_1, ..., \alpha_n)$$
 in Γ
 $\rho(\lambda) = P_n^a E(z^{\alpha_n}) \cdots P_1^a E(z_1^{\alpha})$ with $P_k^a = L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ or $P_k^a = R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
 $E(x + \ell y) = \begin{pmatrix} e^{\frac{1}{2}(x+\ell y)} & 0 \\ 0 & e^{-\frac{1}{2}(x+\ell y)} \end{pmatrix} = \begin{cases} (E(x), ye_1) & \Lambda = 0 \\ (E(x+y), E(x-y)) & \Lambda = -1 \\ E(x+iy) & \Lambda = 1 \end{cases}$

5. The action of the mapping class group

mapping class group of oriented surface S

 $Mod(S) = Diff^+(S)/Diff_0(S) = Out(\pi_1(S)) = Aut(\pi_1(S))/Inn(\pi_1(S))$

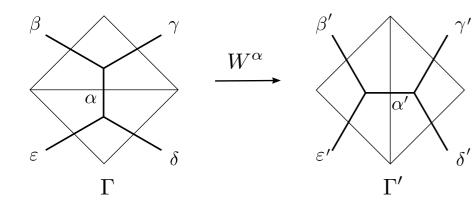
• action on $\operatorname{Hom}(\pi_1(S), G)/G \Rightarrow$ essential in quantisation

 $\phi \in \operatorname{Aut}(\pi_1(S)): \ \rho: \pi_1(S) \to G \ \to \ \rho \lhd \phi = \rho \circ \phi: \pi_1(S) \to G$

• simple description of in terms of triangulations

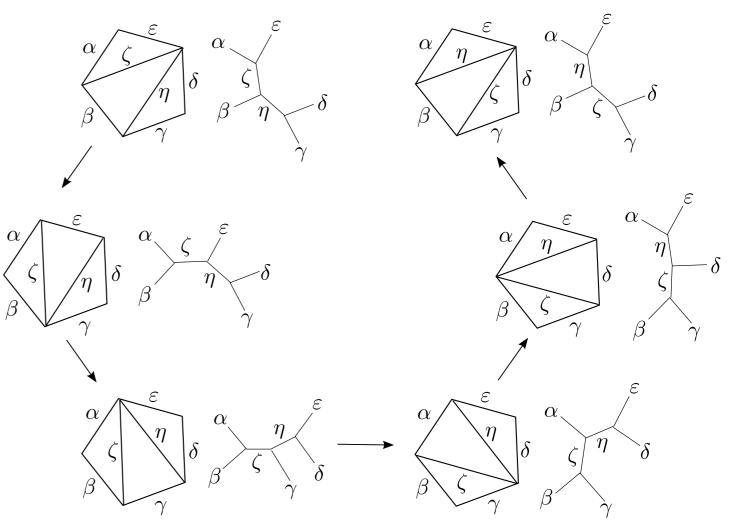
Mod(S) acts by:

• finite sequences of Whitehead moves



modulo relations

 $(W^{\alpha})^{2} = \mathrm{id}$ $W^{\alpha} \circ W^{\beta} = W^{\beta} \circ W^{\alpha} \text{ for } \alpha \cap \beta = \emptyset$ $(\alpha\beta) \circ W_{\alpha} = W_{\beta}$ $W^{\zeta} \circ W^{\eta} \circ W^{\zeta} \circ W^{\eta} \circ W^{\zeta} = (\zeta\eta) \text{ pentagon}$



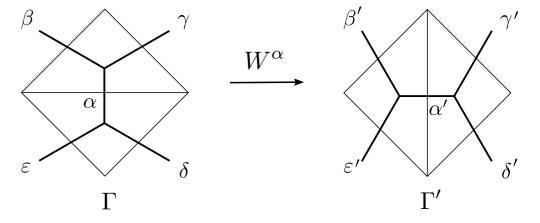
relation to Riemann moduli space

$$\mathcal{T}(S) = \operatorname{Hyp}(S) / \operatorname{Diff}_0(S)$$

Riem(S) = Hyp(S) / Diff⁺(S) = $\mathcal{T}(S) / \operatorname{Mod}(S)$

transformation of shear coordinates under Whitehead move

$$W_{\alpha}: \begin{cases} x^{\alpha} \mapsto -x^{\alpha} \\ x^{\beta,\delta} \mapsto x^{\beta,\delta} + \log(1+e^{x^{\alpha}}) \\ x^{\gamma,\epsilon} \mapsto x^{\gamma,\epsilon} - \log(1+e^{-x^{\alpha}}) \end{cases}$$



Theorem: [Fock-Checkov, Penner]

- transformation of shear coordinates defines Mod(S) action on \mathbb{R}^{E}
- preserves the constraints $c = c' \circ W_{\alpha}$ and induces a Mod(S)-action on $\mathcal{T}(S) \cong ker(c) \subset \mathbb{R}^{E}$

Mod(S) - action on moduli spaces of 3d gravity

transformation of generalised shear coordinates under Whitehead move

$$W^{\alpha}: \begin{cases} z^{\alpha} \mapsto -z^{\alpha} \\ z^{\beta,\delta} \mapsto z^{\beta,\delta} + \log(1+e^{z^{\alpha}}) \\ z^{\gamma,\epsilon} \mapsto z^{\gamma,\epsilon} - \log(1+e^{-z^{\alpha}}) \end{cases} \qquad z^{e} = x^{e} + \ell y^{e} \in R_{\Lambda} \end{cases}$$

Theorem: [Scarinci, C.M.]

The Whitehead moves $W^{\alpha}: R_{\Lambda}^E \to R_{\Lambda}^E$ satisfy the pentagon relation, preserve the constraints $c_{\Lambda}: R_{\Lambda}^E \to R_{\Lambda}^F$ and induces an action of Mod(S) on $\mathcal{M}_{\Lambda}(S)$

6. Summary

- unified description of Lorentzian model spacetimes and isometry groups for different values of Λ
- unified description of MGH Lorentzian spacetimes as quotients of universal cover
 - conformally static spacetimes: via action of Fuchsian group $\Gamma \subset PSL(2, \mathbb{R})$ on lightcone related by earthquakes
 - evolving spacetimes:

from conformally static spacetimes via grafting

- diffeomorphism classes of MGH spacetimes \Leftrightarrow conjugacy classes of group homomorphisms $\rho : \pi_1(S) \to G_\Lambda$
- phase space of 3d gravity contained in moduli space of flat G_{Λ} -connections on S

- relation to Teichmüller space: via analytic continuation of shear coordinates
- explicit description of mapping class group action on $\mathcal{M}_{\Lambda}(S)$