
PROBLEMS SESSIONS

FRANÇOIS DAVID

1. Exercise 1

1.1. Starting from the Hermitean matrix model

Mji = M̄ij

and with potential

Z =

∫
dM e−N Tr(V (M)) , V (M) = M2/2− gM3/3

write the diagrams for the free energy (connected vacuum diagrams) at order g2. Collect
them by powers of N and draw them on a surface with the appropriate genus.

1.2. Same question for the quartic model with potential

V (M) = M2/2− gM4/4

1.3. One considers the Gaussian symmetric real matrix model. One considers N ×N real
symmetric matrices

Mij = Mji

with measure
dM =

∏
i

dMii

∏
i<j

dMij

and potential

Z =

∫
dM e−N Tr(V0(M)) , V0(M) = M2/2

compute the Gaussian propagator and show that

〈MijMkl〉0 = 1/(2N)(δikδjl + δilδjk)

1.4. Now consider the cubic and quartic symmetric matrix models, with the same actions
as above. Write the diagrams for the free energy at order g2 (if you like, you can go to
order g4). Show that one generates now also unoriented diagrams (i.e. fat graphs that can
be drawn only on unoriented surfaces like the Klein bottle of the Moebius strip). What
are the N factors associated to unoriented diagrams?
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2 FRANÇOIS DAVID

2. Exercise 2

2.1. What is the number N of (real) “gauge fixing” conditions for an N ×N Hermitean
matrix to be diagonal?

M = Λ = diag(λ1, · · · , λn)

2.2. Start from a diagonal matrix M0 and perturb it by an infinitesimal unitary transfor-
mation

M0 →Mε = UM0U
−1 , U = 1 + ε , ε = −ε†

with ε null on the diagonal.
How many (real) independent components has the matrix ε ? Compare with N . Write the
big N ×N Jacobian derivative matrix J whose matrix elements are

Jab =
∂ gauge fixing condition “a” for Mε

∂ component “b” for ε

Show that the determinant of J is the square of the Vandermonde determinant for the
diagonal matrix M0 = diag(λ1, · · · , λN ).

det(J ) = ∆(λ1, · · ·λN )2

2.3. Repeat theses calculations for the Real Symmetric Matrix ensemble and show that

det(J ) = |∆(λ1, · · ·λN )|

2.4. Show that in the large N limit, the density of eigenvalues for the Gaussian Hermitean
matrix model is given by the Wigner semicircle law.

2.5. Repeat the calculation for the quartic random matrix model.

2.6. Deduce from the previous question the number of planar rooted quadrangulations
with n faces.
(start by computing the resolvent)

3. Exercise 3

3.1. preliminary question. Show that for a generic potential V (x) associated with the
orthogonal polynomials pk(x) of degree k, the following relation holds for all k:

xpk(x) = Qk,k+1pk+1(x) +Qk,kpk(x) +Qk,k−1pk−1(x)

We now focus on the Gaussian potential V (x) = x2

2 and we note mk(x) the orthogonal

polynomial of degree k satisfying mk(x) = xk +
∑k−1

l=0 c
l
kx

l.

3.2. Compute m0(x), m1(x), m2(x) and m4(x).

3.3. Prove that for all n, xmn(x) = mn+1(x) + αnmn−1(x). Then compute αn.

3.4. Check that Hermite polynomials Hn(x)
def
= (−1)ne

x2

2
dn

dxn e
−x2

2 satisfy the previous
relations.
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4. Exercise 4

4.1. Let Fplanar(g) be the generating functional for planar quadrangulations

Fplanar(g) = lim
N→∞

N−2 log

[∫
dM exp(−N tr(M2/2− g/4M4))

]
Write its derivative as a function of the resolvent. Deduce that

F ′planar =
d

dg
Fplanar(g) = 1/4

∫
dx x4 ρ(x)

with ρ(x) the density of eigenvalues.

4.2. The explicit form for ρ has been found to be

ρ(x) =
1

2π
g (b2 − x2)

√
a2 − x2

with

a2 =
2
(
1−
√

1− 12g
)

3g
, b2 =

√
1− 12g + 2

3g

Compute F ′planar and shows that it has a singularity at g = gc of the form

F ′planar(g) = regular part + cst (gc − g)3/2(1 +O(gc − g))

You may use a formal calculational software (only if you spent too much time with pen
calculations).

4.3. Alternatively, show that the third derivative of Fplanar diverges when g → gc = 1/12
as

F ′′′planar(g) ∝ (gc − g)−1/2(1 +O(gc − g))

by looking at the behaviour of the corresponding x integral near the endpoint x = a of the
e.v. distribution.

4.4. Deduce that Fplanar(g) has a singularity as

(gc − g)5/2

and that the number of (unmarked) quadrangulations with K squares, NK , scales as

NK ∝ 12KK−7/2

Hint, use the fact that you can write

NK =
1

2iπ

∮
dg Fplanar(g) g−K−1

with a small c.c.wise contour around the origin, and deform the contour around the singu-
larity at gc.
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5. Exercise 5

5.1. The hyperbolic metric in the Poincaré disc1 is (z = x+ iy, z̄ = x− iy)

ds2 =
4 dz dz̄

(1− zz̄)2

The scalar curvature R in a conformal metric ds2 = dzdz̄ exp(φ(z, z̄)) is known to be (∆
is the standard Laplacian operator)

R = −4 exp(−φ) ∆φ

Compute the scalar curvature R of the Poincaré metric. Can you show that the angle
between two intersection curves at a given points are the same in the metric g0 = dzdz̄
and in any conformally equivalent metric gφ = ds2 = dzdz̄ exp(φ(z, z̄))?

5.2. Find an analytic transformation z → w = f(z) which maps the Poincaré disk D
onto the upper half plane H = {w : Im(w) > 0}, with for instance f(−i) = 0, f(1) = 1,
f(i) = ∞. Deduce the metric in the Poincaré half plane. Can you show that geodesics
are the (half) circles orthogonal to the real line R (the “infinity”)? Deduce that circles
orthogonal to the unit circle are geodesics in D.

5.3. Which are the transformations w → w′ from H→ H which leave the metric invariant?

5.4. Consider a point x on the boundary of H (the “infinity”) and the set of geodesics that
starts from x. A circle Cx tangent to R at x is called an horocycle.

Show that any such horocycle Cx is orthogonal to the geodesics starting from x.
What are the geodesics starting from ∞ and the horocycles C∞ tangent to ∞?

5.5. Consider the “slice” S of H given by

S = {w : Re(w) ∈ [a, b]} a < b real

and glue the boundaries of this slice into an “hyperbolic cylinder” C by identifying the
points a+ iy and b+ iy with same imaginary part.

Find an analytic map w → z from D onto the unit disc |z| < 1 that maps ∞ onto the
origin z = 0 and the infinity circle of D, i.e. the real segment [a, b] onto the unit circle.

Show the the resulting metric in the unit disk minus the origin D\{0} is of the form

ds2 =
dzdz̄

|z|2 log(1/|z|)2

What is the curvature in this metric?
What became the geodesics starting from ∞ and the horocycles C∞ tangent to ∞ in

this new punctured disk D? = D\{0} ?
Can you compute the relation between the length of an horocycle and the area encloded

inside it?
Which transformations leave invariant this metric?

1actually discovered by Riemann. . .


