# PROBLEMS SESSIONS

#### FRANÇOIS DAVID

## 1. EXERCISE 1

1.1. Starting from the Hermitean matrix model

$$M_{ji} = M_{ij}$$

and with potential

$$Z = \int dM \ e^{-N \operatorname{Tr}(V(M))} \ , \ \ V(M) = M^2/2 - g \ M^3/3$$

write the diagrams for the free energy (connected vacuum diagrams) at order  $g^2$ . Collect them by powers of N and draw them on a surface with the appropriate genus.

1.2. Same question for the quartic model with potential

$$V(M) = M^2/2 - g M^4/4$$

**1.3.** One considers the Gaussian symmetric real matrix model. One considers  $N \times N$  real symmetric matrices  $M_{ij} = M_{ji}$ 

with measure

$$dM = \prod_{i} dM_{ii} \prod_{i < j} dM_{ij}$$

and potential

$$Z = \int dM \ e^{-N \operatorname{Tr}(V_0(M))} \ , \ V_0(M) = M^2/2$$

compute the Gaussian propagator and show that

$$\langle M_{ij}M_{kl}\rangle_0 = 1/(2N)(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$$

**1.4.** Now consider the cubic and quartic symmetric matrix models, with the same actions as above. Write the diagrams for the free energy at order  $g^2$  (if you like, you can go to order  $g^4$ ). Show that one generates now also unoriented diagrams (i.e. fat graphs that can be drawn only on unoriented surfaces like the Klein bottle of the Moebius strip). What are the N factors associated to unoriented diagrams?

#### FRANÇOIS DAVID

## **2.** EXERCISE 2

**2.1.** What is the number  $\mathcal{N}$  of (real) "gauge fixing" conditions for an  $N \times N$  Hermitean matrix to be diagonal?

$$M = \Lambda = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$$

**2.2.** Start from a diagonal matrix  $M_0$  and perturb it by an infinitesimal unitary transformation

$$M_0 \to M_\epsilon = U M_0 U^{-1}$$
 ,  $U = 1 + \epsilon$  ,  $\epsilon = -\epsilon^{\dagger}$ 

with  $\epsilon$  null on the diagonal.

How many (real) independent components has the matrix  $\epsilon$ ? Compare with  $\mathcal{N}$ . Write the big  $\mathcal{N} \times \mathcal{N}$  Jacobian derivative matrix  $\mathcal{J}$  whose matrix elements are

$$\mathcal{J}_{ab} = \frac{\partial \text{ gauge fixing condition "a" for } M_{\epsilon}}{\partial \text{ component "b" for } \epsilon}$$

Show that the determinant of  $\mathcal{J}$  is the square of the Vandermonde determinant for the diagonal matrix  $M_0 = \text{diag}(\lambda_1, \dots, \lambda_N)$ .

$$\det(\mathcal{J}) = \Delta(\lambda_1, \cdots \lambda_N)^2$$

2.3. Repeat theses calculations for the Real Symmetric Matrix ensemble and show that

$$\det(\mathcal{J}) = |\Delta(\lambda_1, \cdots \lambda_N)|$$

**2.4.** Show that in the large N limit, the density of eigenvalues for the Gaussian Hermitean matrix model is given by the Wigner semicircle law.

**2.5.** Repeat the calculation for the quartic random matrix model.

**2.6.** Deduce from the previous question the number of planar rooted quadrangulations with n faces.

(start by computing the resolvent)

#### **3.** EXERCISE 3

**3.1. preliminary question.** Show that for a generic potential V(x) associated with the orthogonal polynomials  $p_k(x)$  of degree k, the following relation holds for all k:

$$xp_k(x) = Q_{k,k+1}p_{k+1}(x) + Q_{k,k}p_k(x) + Q_{k,k-1}p_{k-1}(x)$$

We now focus on the Gaussian potential  $V(x) = \frac{x^2}{2}$  and we note  $m_k(x)$  the orthogonal polynomial of degree k satisfying  $m_k(x) = x^k + \sum_{l=0}^{k-1} c_k^l x^l$ .

**3.2.** Compute  $m_0(x)$ ,  $m_1(x)$ ,  $m_2(x)$  and  $m_4(x)$ .

**3.3.** Prove that for all n,  $xm_n(x) = m_{n+1}(x) + \alpha_n m_{n-1}(x)$ . Then compute  $\alpha_n$ .

**3.4.** Check that Hermite polynomials  $H_n(x) \stackrel{\text{def}}{=} (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}}$  satisfy the previous relations.

#### 4. EXERCISE 4

**4.1.** Let  $F_{planar}(g)$  be the generating functional for planar quadrangulations

$$F_{planar}(g) = \lim_{N \to \infty} N^{-2} \log \left[ \int dM \, \exp(-N \, tr(M^2/2 - g/4M^4)) \right]$$

Write its derivative as a function of the resolvent. Deduce that

$$F'_{planar} = \frac{d}{dg} F_{planar}(g) = 1/4 \int dx \ x^4 \ \rho(x)$$

with  $\rho(x)$  the density of eigenvalues.

**4.2.** The explicit form for  $\rho$  has been found to be

$$\rho(x) = \frac{1}{2\pi} g (b^2 - x^2) \sqrt{a^2 - x^2}$$

with

$$a^{2} = \frac{2\left(1 - \sqrt{1 - 12g}\right)}{3g} , \quad b^{2} = \frac{\sqrt{1 - 12g} + 2}{3g}$$

Compute  $F'_{planar}$  and shows that it has a singularity at  $g = g_c$  of the form

$$F'_{planar}(g) = \text{regular part} + cst (g_c - g)^{3/2} (1 + \mathcal{O}(g_c - g))$$

You may use a formal calculational software (only if you spent too much time with pen calculations).

**4.3.** Alternatively, show that the third derivative of  $F_{planar}$  diverges when  $g \rightarrow g_c = 1/12$  as

$$F_{planar}^{\prime\prime\prime}(g) \propto (g_c - g)^{-1/2} (1 + \mathcal{O}(g_c - g))$$

by looking at the behaviour of the corresponding x integral near the endpoint x = a of the e.v. distribution.

**4.4.** Deduce that  $F_{planar}(g)$  has a singularity as

$$(g_c - g)^{5/2}$$

and that the number of (unmarked) quadrangulations with K squares,  $N_K$ , scales as

$$N_K \propto 12^K K^{-7/2}$$

Hint, use the fact that you can write

$$N_K = \frac{1}{2i\pi} \oint dg \ F_{planar}(g) \ g^{-K-1}$$

with a small c.c.wise contour around the origin, and deform the contour around the singularity at  $g_c$ .

#### FRANÇOIS DAVID

## **5.** EXERCISE 5

**5.1.** The hyperbolic metric in the Poincaré disc<sup>1</sup> is  $(z = x + iy, \bar{z} = x - iy)$ 

$$ds^2 = \frac{4\,dz\,d\bar{z}}{(1-z\bar{z})^2}$$

The scalar curvature R in a conformal metric  $ds^2 = dz d\bar{z} \exp(\phi(z, \bar{z}))$  is known to be ( $\Delta$  is the standard Laplacian operator)

$$R = -4 \exp(-\phi) \,\Delta\phi$$

Compute the scalar curvature R of the Poincaré metric. Can you show that the angle between two intersection curves at a given points are the same in the metric  $g_0 = dz d\bar{z}$  and in any conformally equivalent metric  $g_{\phi} = ds^2 = dz d\bar{z} \exp(\phi(z, \bar{z}))$ ?

**5.2.** Find an analytic transformation  $z \to w = f(z)$  which maps the Poincaré disk  $\mathbb{D}$  onto the upper half plane  $\mathbb{H} = \{w : \operatorname{Im}(w) > 0\}$ , with for instance f(-i) = 0, f(1) = 1,  $f(i) = \infty$ . Deduce the metric in the Poincaré half plane. Can you show that geodesics are the (half) circles orthogonal to the real line  $\mathbb{R}$  (the "infinity")? Deduce that circles orthogonal to the unit circle are geodesics in  $\mathbb{D}$ .

**5.3.** Which are the transformations  $w \to w'$  from  $\mathbb{H} \to \mathbb{H}$  which leave the metric invariant?

**5.4.** Consider a point  $\mathbf{x}$  on the boundary of  $\mathbb{H}$  (the "infinity") and the set of geodesics that starts from  $\mathbf{x}$ . A circle  $\mathcal{C}_{\mathbf{x}}$  tangent to  $\mathbb{R}$  at  $\mathbf{x}$  is called an *horocycle*.

Show that any such horocycle  $\mathcal{C}_{\mathbf{x}}$  is orthogonal to the geodesics starting from  $\mathbf{x}$ .

What are the geodesics starting from  $\infty$  and the horocycles  $\mathcal{C}_{\infty}$  tangent to  $\infty$ ?

**5.5.** Consider the "slice" **S** of  $\mathbb{H}$  given by

$$\mathbf{S} = \{ w : \operatorname{Re}(w) \in [a, b] \} \qquad a < b \text{ real}$$

and glue the boundaries of this slice into an "hyperbolic cylinder"  $\mathbf{C}$  by identifying the points a + iy and b + iy with same imaginary part.

Find an analytic map  $w \to z$  from **D** onto the unit disc |z| < 1 that maps  $\infty$  onto the origin z = 0 and the infinity circle of **D**, i.e. the real segment [a, b] onto the unit circle.

Show the the resulting metric in the unit disk minus the origin  $\mathbb{D}\setminus\{0\}$  is of the form

$$ds^2 = \frac{dz d\bar{z}}{|z|^2 \log(1/|z|)^2}$$

What is the curvature in this metric?

What became the geodesics starting from  $\infty$  and the horocycles  $\mathcal{C}_{\infty}$  tangent to  $\infty$  in this new punctured disk  $\mathbb{D}_{\star} = \mathbb{D} \setminus \{0\}$ ?

Can you compute the relation between the length of an horocycle and the area encloded inside it?

Which transformations leave invariant this metric?

<sup>&</sup>lt;sup>1</sup>actually discovered by Riemann...